a2 United States Patent

Nishina et al.

US009465561B2

10) Patent No.: US 9,465,561 B2
45) Date of Patent: Oct. 11, 2016

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

STORAGE SYSTEM AND STORAGE
CONTROL METHOD

Applicant: Hitachi, Ltd., Tokyo (IP)

Inventors: Tadato Nishina, Tokyo (JP); Hiroaki
Akutsu, Tokyo (JP); Kohei Tatara,
Tokyo (JP); Norio Shimozono, Tokyo
(IP)

Assignee: Hitachi, Ltd., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/828,912

Filed: Aug. 18, 2015

Prior Publication Data

US 2015/0355864 Al Dec. 10, 2015

Related U.S. Application Data

Continuation of application No. 14/241,784, filed as
application No. PCT/JP2013/061485 on Apr. 18,
2013, now Pat. No. 9,122,399.

Int. CL.

GO6F 12/00 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 3/0689 (2013.01); GO6F 3/061

(2013.01); GOGF 3/0604 (2013.01); GO6F
3/0608 (2013.01); GO6F 3/0644 (2013.01);
GOG6F 3/0658 (2013.01); GOGF 3/0659
(2013.01); GO6F 3/0688 (2013.01); GO6F
2003/0695 (2013.01)

Field of Classification Search
CPC .. GO6F 3/0608;, GO6F 11/1012; GO6F 11/08;

GO6F 11/1076; GO6F 17/30153; GO6F
3/0689; GOGF 3/0659; GOG6F 3/0688
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,378,038 B1* 4/2002 Richardson et al. 711/114
7,437,658 B2 10/2008 Kobayashi
2005/0078399 Al* 42005 Fungetal. ... 360/69

2008/0101605 Al 5/2008 Kitamura et al.
2009/0055688 Al 2/2009 Hafner et al.
2009/0070356 Al 3/2009 Mimatsu
2011/0320915 A1 12/2011 Khan

FOREIGN PATENT DOCUMENTS

JP 2008-108039 A 5/2008
JP 2009-070361 A 4/2009
WO 2010/137178 Al 12/2010

* cited by examiner

Primary Examiner — David X Yi
Assistant Examiner — Alan Otto
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

A storage system includes: a storage device including a
recording medium that stores data and a device controller
that executes addition processing involving a change of state
of the data with respect to the data; and a storage controller
that controls input and output of data for the storage device.
The storage controller transmits, to the storage device,
determination information that can be utilized by the device
controller for determining whether or not to execute the
addition processing along with input-output processing
relating to input-output target data. The device controller
controls execution of the addition processing with respect to
the input-output target data based on the determination
information transmitted from the storage controller.

6 Claims, 34 Drawing Sheets

Flash chip
16
: £
Flash chip

FMPK

1668

6

U.S. Patent Oct. 11, 2016 Sheet 1 of 34 US 9,465,561 B2
External storage apparatus
/\/30 40 20
Host
computer anagemen
/\/50 computer
P
10
., 160 N16Q 160 /160
FM || FM || FM || FM
PK || PK || PK || PK 1
SR NS S S 1T F---oL_L
0RO :
AN [.
141
: li5 o, 143 |1
113 Yo% - I
! I/F
, | Buffer 101112 Buffer :
I
FE controlier
: FEPK BE controller l| BEPK H. 140 :
I \ 3 :
f 142 "
! 150
1 1
1]
1 |
I 120\/\ 1301
LT
120 [) .
1 121 121 121 121 I
1 o B e B e B e Control Data :
: MP MP| |MP[[MP Information| Cache |
i /VI ' | ' ' shared | Memory !
: 23 Memory (CM) I
, v — M —130 1
1 . N N I
. 120”7 MPPK 132 131 7 cmPK !
1
I Storage controller :
Storage system

Fig. 1

U.S. Patent

Oct. 11, 2016 Sheet 2 of 34 US 9,465,561 B2
N160
1§8
: Package controller :
! |
! |
: 161 Communication /\/167 :
: Buffer interface "
! |
! [
| o164 \ 163 !
' Compression Package [/ I
! -decompression processor !
: circuit 1
! :
: N 169 / :
! 1
1 | Parity creation circuit |
: 162 !
.Y 165 Package '
i memory :
1 | Bus transfer apparatus "
|
Pepepeyny ey SRR ;
N166
Flash chip
N166
Flash chip
FMPK

U.S. Patent

Oct. 11, 2016

Sheet 3 of 34

US 9,465,561 B2

1) N13O N120
A
New D1
CMPK| MPPK
) AJ43 /\/140
New D1 Intern[w)qld|ate Buft
\ - u e"] BEPK
XDWRITE 161 161
3 8)|XDREAD (9) | XPWRITE
(3) /160 /\/ (8) /\/ A 160
v A - 2\
@ || [New D1 InterB11ed|ate InterrB?dlate 0 New P
7) (11)
Old D1 OoldP
x Buffer) \ Buffer
y | Compression-
Gy ©a decor‘npress%n circuit (10) 166 (12)
(-)
New || Old
L Flash chip Flash chip
~/ FMPK FMPK
166

Fig. 3

U.S. Patent

Oct. 11, 2016

Sheet 4 of 34

US 9,465,561 B2

7

Start parity creation processing

~

»

v

Detect data before parity creation

NS41

Y

Ensure area in Buffer of BEPK

S42

v

Execute XDWRITE command
with respect to data FMPK

/\/843

Ensure area in Buffer of BEPK

S44

A

Execute XDREAD command
with respect to data FMPK

/45

A

Execute XPWRITE command
with respect to parity FMPK

|,/ S46

v

[Terminate parity creation processing }

U.S. Patent Oct. 11, 2016 Sheet 5 of 34 US 9,465,561 B2

Start XDWRITE processing
A 4
NS51
Receive XDWRITE command
A 4
/\/852
Receive new data in buffer
\ 4
Decompress old data 4 553
\ 4
Store old data in buffer % So4
\ 4
Create intermediate data /\/855
Y
Compress new data /S50
\ 4
Store new data in flash chip |\ So7
v
Terminate XDWRITE processing

Fig. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 34

Start XDREAD pracessing

Y

Receive XDREAD command

S62

563

Yes Is there No
intermediate
data?

4 ya%s 3

y

US 9,465,561 B2

S61

N

S64

Respond with intermediate data

Abnormal end response

A 4

[Terminate XDREAD processing]

Fig. 6

U.S. Patent

Oct. 11, 2016 Sheet 7 of 34 US 9,465,561 B2
N
Start XPWRITE processing
A 4
NS71
Receive XPWRITE command
v
. . : S72
Receive intermediate data in buffer Vv
o S73
Store old parity in buffer o4
Create new parity Valk
L . S75
Store new parity in flash chip 4

Terminate XPWRITE processing

Fig. 7

U.S. Patent

Oct. 11, 2016

Sheet 8 of 34

US 9,465,561 B2

122 124
120
Parity
Determination
information
7
[Y |
BufferJ BEPK
o0 o1 197 124 o0 161 162 4oy
~1%0 N NV "
[
i Pari
B?a;g)r/mination Detgmination
information information
Buffer Memory Buffer Memory
f dCompression- it]
ecompression circui
y P \/\)./166 /166
164
Q Flash chip Flash chip
FMPK FMPK

U.S. Patent Oct. 11, 2016 Sheet 9 of 34 US 9,465,561 B2

J\/1 24
. 124a . 124b
Address | Aftribute
aaa Data
bbb Data
hhh Parity
yyyy Data
zzz7 Parity

Fig. 9

U.S. Patent

Oct. 11, 2016

Sheet 10 of 34

@

US 9,465,561 B2

1
(1) l & N30 20
A
CMPK MPPK
WRITE (7) 7) 9) LB 0
2
New D1]| Old D1 OldP New P Buff]
- ue) BEPK
161 162 16N\ (10) 162
N (4) 160y 124 \(6) WRITE, W 124
i ol - N A
([I Il \l‘ N - I I’L‘\
Pari Parity
New D1{] Old D JDetermir?;tion Old P| [New P Determination
(3)“ information 1 information
Y Buffer Memory Buffer Memory
Compression
(2) -decompression circuit 166] 1 (5) 4(11) /\1/66
1
New || Old \/\
Flash chip Flash chip
FMPK FMPK

Fig. 10

U.S. Patent

Oct. 11, 2016

Sheet 11 of 34

US 9,465,561 B2

(1) (1) (M () 2) /130 /120
v v A 4 \ 4
New D1 New Dn New P
CMPK MPPK
WRITE(D) WRITE(D) |(3) WRITE(P) /\/140
2
New D1 New Dn New P Buff
UTel) BEPK
3)
161 102004 |1 () 161
ML VTSR B
/
New D1 Parity New P
Determination Determination
information (4) information
Buffer)\ Memory 164 Buffer Memory
Compression- / . .
decompression circuit /\/166
/Y v
New cD1 | 166 New P
\ Flash chip Flash chip
FMPK FMPK

Fig. 11

U.S. Patent

Oct. 11, 2016 Sheet 12 of 34 US 9,465,561 B2

[Start parity creation processing J

A

Detect data before parity creation o

S121

v S122
No Is data of stripe Yes
column all present?
/\/8129
Ensure area for old data in |,,5123 E ,
nsure area for new parity
CMPK and Buffer of BEPK in CMPK
! S130
READ old data from |,,S124 . B/
data FMPK ,
Create new parity from
! data of stripe column
Ensure area for old parity in /\/S125
CMPK and Buffer of BEPK
v /5126
READ old parity from Ns131
parity FMPK 3
Il Ensure area for
Ensure area for 5127 new parity in Buffer of BEPK
new parity in CMPK 5132
l \ 4 Yl
S128 .
‘Create new parity from pvV WRITE with respect to
new/old data and old parity parity FMPK

Y

[Terminate parity creation processing]

Fig. 12

U.S. Patent Oct. 11, 2016 Sheet 13 of 34 US 9,465,561 B2

[Start READ processing]

S141

3 a4

Receive READ command

4 S142
Data Is READ target data Parity
or parity?
A 4
/\/8143
Decompress READ target
A 4
Store READ target in Buffer /\/8144
A 4
NS145
Respond with READ target
I
!
[Terminate READ processing]

Fig. 13

U.S. Patent Oct. 11, 2016 Sheet 14 of 34

US 9,465,561 B2

[Start WRITE processing

A 4

Receive WRITE command

S1561

A 4

in Buffer

3 S153

DATA Is WRITE target data
or parity?

\ 4

NS1 54
Compress WRITE target

A 4

Store WRITE target NS1 55
in flash chip

'

Receive WRITE target S$152

PARITY

[Terminate WRITE processing

Fig. 14

U.S. Patent Oct. 11, 2016 Sheet 15 of 34 US 9,465,561 B2

op:
(6) - N30 /\/120
D1 Dn P
7'y § CMPK MPPK
7y | WRITE (2)[READ(D) (5)] READ(P) 143 140
: e
D1 Dn P J
[- X Buffer | sepk
161 162 1 (4y 161 162
(8) (1)
N 160 p/ /160 p 160
A 4 ‘\’
D1 P
A
(9)
Buffer J|Memo 164 Buffer /| Memory
e
|[v Compression-]i. .
| decompression circuit (3) N166
cD1 /166 P
Flash chip Flash chip
FMPK FMPK

Fig. 15

U.S. Patent

Oct. 11, 2016

Sheet 16 of 34

US 9,465,561 B2

[Start collection copy processing]

A 4

in spare drive

Register parity determination informationjv

5161

/5168

S$162

h 4 N

Change processing target
to next area

Ensure area for data and parity
in Buffer of BEPK and CMPK

4

A

S163

A 4 N

READ data and parity of
stripe column from FMPK

S164

Y. /\/

Recover data of failed portion

S165

v N

Ensure area for recovered data
in Buffer of BEPK

5166

A 4

WRITE recovered data in data FMPK

A 4

5167

No
—< Is it last area?

>

Yes

A 4

[Terminate collection copy processing }

Fig. 16

U.S. Patent Oct. 11, 2016

Sheet 17 of 34 US 9,465,561 B2
122
/\/130 N120
ke
@]
o
) 4 T:
New D1 LM
CMPK] | MPPK
(3)| XDWRITE(RAW) 143 /140
] o N[O |
New D1 Intermediate cD1|Q ~'| §
= EPK
3 161 (11)
®) 2/ 160 [XDREADRAW) XPWRITE(RAW) :\E/” 160 ((2)
I il [
/ Buffer (10)\ (1D eTe @ Intermvediate
\ 4 / 8,_ g g cDA1
New D1 14 J(13)
Intermediate[S
4+ O ¢cD1 8
(5)
New P
5% = oid odP (23
O N |[New cD1| 2 D1 ol B2
\ o el = K Buffer ¥)
A 4
Compression- 164
decompression circuit v 166) (16) A/166 (1 (12)
r 3 & > X
o 3 8]
New cD1 © cD1 New P N ,8, OidP N %
L Flash chip Flash chip
FMPK FMPK

Fig. 17

U.S. Patent Oct. 11, 2016 Sheet 18 of 34 US 9,465,561 B2

122
130 /\/ 120
T
@
\ 4 A
New D1 LM
CMPK} IMPPK
(3) | XDWRITE 14310
New D1 |lntermediate D1 |-(95]B
= Buffer EPK
161 XDREAD 161
(4) a0 JB0 4/ XPWRITE |(9)
M 1
2
4 (8)) 4 (11) Intermediate
! () | .‘D D .
New D1 ::r;:ermedlate New P | (2)
10) ; o
Old D1 k (12)(| OdP |3
\ Y Buffer j Buffer A)
Compression-
®) By decompress\iE)lricircuit]196 /166 M S
v o
OdP |a
New ¢D1||Old cD1 184 New P % ®
Flash chip Flash chip J
FMPK FMPK

Fig. 18

U.S. Patent Oct. 11, 2016 Sheet 19 of 34 US 9,465,561 B2

—XO
(D s (2) 130 /120
\ 4 v
New D1 NewDn|| NewP |3
CMPK MPPK
WRITE(D
3) (D) _® WRITED) | (4)WRITE(P) 143 140
i New D1 NewDn| | NewP |3
: Buffer BEPK
4
(3) (3) o)61 w0 12
Y A/ v /\/ 2l
P v T 1
New D1 i © Parity
inati New P | Determination
information
L Buffer Buffer Memory
, 164
v Compression- (\ - (5)
decompression circuit . 166
/ v
R ©
New cD1 166 NewP |3
\ Flash chip Flash chip
FMPK FMPK

Fig. 19

U.S. Patent Oct. 11, 2016

Sheet 20 of 34

US 9,465,561 B2

170

ltem Value
170
Command type WRITE v V8
/\/170b
LBA XXX
Transfer length yy 4 170c
Parity creation trigger After compression |,,170d
(post)
170
Compression block number | nn v V8
: 170f
Compression Block 1 S1 vV
block size Block 2 S92 /\/170f
Block nn | Snn 1701

Fig. 20

U.S. Patent Oct. 11, 2016 Sheet 21 of 34

[Start parity creation processing]

Detect data before parity creation

/\/8121

A 4

S122

s data of stripe column all

|
No _< present?

Yes

A\ 4

RMW parity /\/821 2
creation processing

NS129

Ensure area for
new parity in CMPK

5130

¥4

Create new parity from
data of stripe column

/\/8131

Ensure area for new parity
in Buffer of BEPK

S211

3 o/

Provide new parity
with parity creation trigger:
before compression

l /5132
WRITE with respect to
parity FMPK

[Terminate parity creation processing]

Fig. 21

US 9,465,561 B2

U.S. Patent Oct. 11, 2016 Sheet 22 of 34

[Start RMW parity creation processing]

A

8221
Determine parity
Before creation trigger After

compression
S42

A 4 /\/
Ensure area for new data
in Buffer of BEPK

543

v N

XDWRITE(CMP) in data FMPK

| NS44

Ensure area for intermediate data
in Buffer of BEPK

| NS45

XDREAD(CMP) in data FMPK

5222

A N

Provide data wit parity creation
trigger: before compression

S47

Y /\/

XPWRITE(CMP) in parity FMPK

compression
J /\/842

Ensure area for new data
in Buffer of BEPK

S43

) 4 N

XDWRITE(RAW) in data FMPK

J NS44

Ensure area for intermediate data
in Buffer of BEPK

NS45

XDREAD(RAW) in data FMPK

/\/8227

Provide data with parity creation
trigger: after compression

US 9,465,561 B2

S47

N

XPWRITE(RAW) in parity FMPK

Y

[Terminate RMW parity creation processing]

Fig. 22

U.S. Patent Oct. 11, 2016 Sheet 23 of 34 US 9,465,561 B2

[Start XDWRITE processing]
¥
S51
Receive XDWRITE command [V
: /\/852
Receive new data in Buffer
y S231
After Determine parity Before
compression creation trigger compression
Compress new data Decompress old data
| 5233 554
Store new Qata after compression Store old data in buffer
in flash chip
] A S234 { A S55
Store new data after compression Create intermediate data from
in Buffer new/old data before compression
¥ v/ S235 ! /S56
Store old data after compression C dat
in Buffer ompress new data
) nS236 l A S57
Implement padding in data Store new data after
of small size compression in flash chip
A S237
Create intermediate data from
new/old data after compression
v 5238
Provide new data size after
compression to intermediate data

A 4

(Terminate XDWRITE processing }

Fig. 23

U.S. Patent Oct. 11, 2016 Sheet 24 of 34 US 9,465,561 B2

[Start XDREAD processing -]
y N861
Receive XDREAD command
v S62

Ye§ Is there No
intermediate data?

y

S64

Abnormal end response

After i /\/3241 Before
compression Determine parity gompression
creation trigger
yS242 ! 563

Respond with size information

and intermediate data Respond with intermediate data

A 4

[Terminate XDREAD processing]

Fig. 24

U.S. Patent

Oct. 11, 2016 Sheet 25 of 34 US 9,465,561 B2
[Start XPWRITE processing

v

_ NS71

Receive XPWRITE command

!

NS?Z

Receive intermediate data in Buffer

!

o NST3

Store old parity in Buffer

¥ S251

After Determine parity Before
compression creation trigger compression

Before

compression compression
$252

\ \ 4
Determine parity creation Determine parity creation
trigger of old parity trigger of old parity

After
S259

NV

After + Before
compression Abnormalend |vS293 | compression
5260
\ 4 A 4 /\/
Implement padding S254 Create new parity from
in intermediate data intermediate data and old parity
Create new parity from S255 Ay 5261
intermediate data and old parity Provide new parity with parity
v S256 creation trigger. before compression
Update size information v 5262
‘ \ 4 yiva
Provide new parity with parity S257 Store new parity in flash chip
creation trigger: after compression
S§258
Store new parity in flash chip v

A

r Terminate XPWRITE processing]

Fig. 25

U.S. Patent

Oct. 11, 2016

Sheet 26 of 34

US 9,465,561 B2

OR}€ 122
(3)© 130120
T
®
A 4 4
D1 Dn P LM
) . CMPK PPK
(4) | WRITE(CMP) 143 READ(CMP) | READ(CMP) L, 140
TAY
D1 Dn P]
—x = Buffer BEPK
161 61 161
160 N16c\ 2) 160
1
(
Dn P |3
164 1 k
Buffer
64 IF Buffer
r M Compression-]'.J. . Compression- (1)
decompression circuit decompression circuit 166
166 yava
\/\(} -
cD1 166 cD1 P |3
Flash chip L Flash chip Flash chip
FMPK FMPK FMPK

Fig. 26

U.S. Patent

Oct. 11, 2016 Sheet 27 of 34 US 9,465,561 B2
OR})€
(10) - 130
cD1 E_ cDn g
Lan] ©)
cD1 cDn P
yy y Y CMPK
(12 WRITE(RAW) 143 (8) READ(RAW)| (8) READ(RAW) 140
VA |
[cD1 cDn P Buffer]
BEPK
12
(12) 161 61 (2)(3)
160 1}31 J8o
w |T
cD1 164 cDn P N a
AN Y [
164
Buffer ' Buffer Buffer
(13 4) (1)
166 /166
} 2 \AN —T5
cD1 ,166 cD1 P N 'a
Flash chip Flash chip Flash chip
FMPK FMPK FMPK

Fig. 27

U.S. Patent Oct. 11, 2016 Sheet 28 of 34 US 9,465,561 B2

{ Start collection copy processing]

!

Register parity determination S161
information in spare drive v

1
1 Y

NS168 Acqu_ire pgrity %
creation trigger

S281
Change processing

target to next area

4 Ensure area for data/parity ,\/5162
in Buffer of BEPK and CMPK
' 3282
After Determine parity Before
compression creation frigger compression
. 4 -~ /S163
Acquire size information of [S283 | READ(CMP) data/parity
recovery data from parity FMPKYY from FMPK
¥
READ(RAW) data/parity 2/234
from FMPK | S164
v 3
vad B e
Implement padding in data ecover aata or 1aile
Z - portion from data/parity
Recover data of failed portion AS/286
from data/parity
¥ | NS165

PDiscard padding portion of recovery (5287 | Ensure area for data of
data based on size information [V failed portion in BEPK

L

Ensure area for data of 5288
failed portlcin in BEPK i A/8166
S289 ;
WRITE(RAW) in data FMPK [~/ WRITE(CMP) in data FMPK
I |
NO L S167
Is it last area?
I YES

[Terminate collection copy processing }

Fig. 28

U.S. Patent Oct. 11, 2016 Sheet 29 of 34 US 9,465,561 B2

171

ltem Value
Command type WRITE v 171a

171b
LBA XXX v

171c
Transfer length yy N

1

Compression implementation | Implementation (v 171d
necessity necessary

Fig. 29

U.S. Patent Oct. 11, 2016 Sheet 30 of 34 US 9,465,561 B2

[Start READ processing j
! NS141
Receive READ command
S301
Implementation ~ Implementation
necessary Determine compression unnecessary
‘ implementation necessity |
{ NS142
Is READ target Parity
data or parity?
Data
NS143
Decompress READ target
4
Store READ target in Buffer pv S144
A 4
/\/8145
Respond with READ target
A
[Terminate READ processing }

Fig. 30

U.S. Patent Oct. 11, 2016 Sheet 31 of 34 US 9,465,561 B2

[Start WRITE processing]
Y

Receive WRITE command

/\/8151

Y /5152
Receive WRITE target in Buffer

S311

Implementation Fav4 Implementation
necessary Determine compression unnecessary
implementation necessity
5153 ‘
Is WRITE target >Par|ty
data or parity? [
Data
! AS154
Compress WRITE target

Store WRITE target /5155
in flash chip

|

!

[Terminate WRITE processing]

Fig. 31

U.S. Patent

Oct. 11, 2016

Sheet 32 of 34

US 9,465,561 B2

122 195
130
-
Function
Fimplementation
Determination
information
Memory
CMPK MPPK
143 O VAL
[] BEPK
Buffer J
161 162 161 162
125
N0 g | N 10| 128
A —L
Function Function
implementation| implementation
Determination Determination
information information
Buffer Memory Buffer Memory
Drive function
[- ~ N166
)
167
Flash chip J Flash chip
\/\ FMPK FMPK

v

166

Fig

. 32

U.S. Patent Oct. 11, 2016 Sheet 33 of 34 US 9,465,561 B2

. 130 ~ 120
D1 D2
CMPK MPPK
(1) 2 143 140
\ ——
D1 D2]
[Buffer } gepk
(1) 161 162 152) 161 162
160 125 Command 160 125
Command _p/ n A 4 AN~ p gl
- = - 1
T D1 Function D2 Function
- (3) implementation| (4) implementation
Determination Determination
information information
_ Buffer Memory L ©) Buffer Memory
167 ‘ 167
Drive function unit 1/ 166 Drive function unit
)} 5 v 66
4 '}
D1 D2
9 Flash chi Flash chip
FMPK FMPK

Fig. 33

U.S. Patent Oct. 11, 2016 Sheet 34 of 34 US 9,465,561 B2

[Start command processing }
y NS341
Receive command
Implementation y S342 .

necessa Determine function 'Tjg'ﬁgggg@”

implementation necessity

A 4

Implement function /\/8343
with respect to data

A

. S344
Implement command processing v

'

[Terminate command processing]

Fig. 34

US 9,465,561 B2

1
STORAGE SYSTEM AND STORAGE
CONTROL METHOD

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation application of U.S.
application Ser. No. 14/241,784, filed Feb. 27, 2014, which
is a 371 application of International Application No. PCT/
JP2013/061485, filed Apr. 18, 2013, the entirety of the
contents and subject matter of all of the above is incorpo-
rated herein by reference.

TECHNICAL FIELD

The present invention relates to storage control of a
storage system having a storage device capable of executing
predetermined processing with respect to storage target data.

BACKGROUND ART

In a storage system, a storage controller performs control
of 10 with respect to a storage device that is a final storage
apparatus for data. Along with an increase in the amount of
data handled in companies in recent years, costs for data
storage is also increasing due to an increase in storage
devices necessary for storing data. Therefore, a reduction in
cost for holding data in a storage system is desired. As one
technique that addresses this need, there is a technique of
reducing the data storage amount by compressing data
stored in a storage device (e.g., hard disk drive (HDD) or
solid state drive (SSD)). Due to the increase in data amounts,
it is desired that data compression techniques be applied not
only to a volume for backup application but also to a volume
(primary volume) used in normal operations.

Regarding the compression technique, PTL 1 discloses a
technique in which a flash device implements data compres-
sion processing in order to reduce the data volume stored in
the flash device such as an SSD in which a recording
medium is a flash memory with high bit cost.

CITATION LIST
Patent Literature

[PTL 1] US Patent Application Publication No. 2011/
320915
[PTL 2] WO 2010/137178

SUMMARY OF INVENTION
Technical Problem

With the technique of PTL 1, the load on a storage
controller is reduced compared to a case where a storage
controller implements compression processing, since the
flash device implements the compression processing. How-
ever, since the flash device implements the compression
processing in addition to IO processing, the performance of
the flash device decreases compared to when the compres-
sion processing is not implemented. Since the 10 processing
of the flash device is higher in speed compared to an HDD,
the influence of compression/decompression processing on
the performance increases. That is, in the case where the
compression processing is implemented with the flash

10

15

20

25

30

35

40

45

50

55

60

65

2

device, the performance degradation rate increases com-
pared to a case where the compression processing is imple-
mented with an HDD.

In a storage system, there are cases where a redundant
array of independent disks (RAID) group is formed to create
a parity (redundant code) for the purpose of increasing the
speed of 10 processing or improving fault tolerance. As
parity creation methods for a RAID group, there is a
conventionally-known method in which a controller of a
storage system creates a parity and a method disclosed in
PTL 2 in which a storage device creates a parity. When a
compression technique is applied to such a system, decom-
pression of old data and old parity and compression of new
data and new parity are necessary with respect to one host
write at the time of a random write. That is, the compression/
decompression processing is performed two times each, thus
further increasing the performance degradation rate.

In the case where a compression technique is applied to a
primary volume, the influence of performance degradation
due to data compression on operations is large, and it is a
task to prevent performance degradation while reducing the
data storage amount with compression. For example, in
on-line transaction processing (OLTP) that frequently
involves access to a database, a random write is relatively
frequent, and the performance degradation in the case of
data compression also increases.

Solution to Problem

A storage system includes a storage device including a
recording medium that stores data and a device controller
that executes addition processing involving a change of state
of data with respect to data and a storage controller that
controls input and output of data for the storage device. The
storage controller transmits, to the storage device, determi-
nation information that can be utilized by the device con-
troller for determining whether or not to execute the addition
processing along with input-output processing relating to
input-output target data. The device controller controls
execution of the addition processing with respect to the
input-output target data based on the determination infor-
mation transmitted from the storage controller.

Advantageous Effects of Invention

A flash device determines the necessity of compression
processing based on the information transmitted from the
storage controller. Accordingly, the storage amount of data
is reduced to enable a reduction in cost, and the write
performance can be improved from the case where entire
data is compressed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a hardware configuration diagram of a computer
system according to Example 1.

FIG. 2 is a hardware configuration diagram of an FMPK
according to Example 1.

FIG. 3 is a diagram showing an overview of parity
creation processing at the time of a random write according
to Example 1.

FIG. 4 is a flowchart of the parity creation processing at
the time of a random write according to Example 1.

FIG. 5 is a flowchart of XDWRITE processing according
to Example 1.

FIG. 6 is a flowchart of XDREAD processing according
to Example 1.

US 9,465,561 B2

3

FIG. 7 is a flowchart of XPWRITE processing according
to Example 1.

FIG. 8 is a diagram showing an overview of parity
determination information registration processing according
to Example 2.

FIG. 9 is a configuration diagram of one example of parity
determination information according to Example 2.

FIG. 10 is a diagram showing an overview of RMW parity
creation processing according to Example 2.

FIG. 11 is a diagram showing an overview of all-stripe
parity creation processing according to Example 2.

FIG. 12 is a flowchart of parity creation processing
according to Example 2.

FIG. 13 is a flowchart of READ processing according to
Example 2.

FIG. 14 is a flowchart of WRITE processing according to
Example 2.

FIG. 15 is a diagram showing an overview of collection
copy processing according to Example 2.

FIG. 16 is a flowchart of the collection copy processing
according to Example 2.

FIG. 17 is a diagram showing an overview of RMW parity
creation processing in the case of creating a parity using data
after compression according to Example 3.

FIG. 18 is a diagram showing an overview of the RMW
parity creation processing in the case of creating a parity
using data before compression according to Example 3.

FIG. 19 is a diagram showing an overview of all-stripe
parity creation processing according to Example 3.

FIG. 20 is a configuration diagram of one example of an
XDREAD/XDWRITE/XPWRITE command according to
Example 3.

FIG. 21 is a flowchart of parity creation processing
according to Example 3.

FIG. 22 is a flowchart of the RMW parity creation
processing according to Example 3.

FIG. 23 is a flowchart of XDWRITE processing accord-
ing to Example 3.

FIG. 24 is a flowchart of XDREAD processing according
to Example 3.

FIG. 25 is a flowchart of XPWRITE processing according
to Example 3.

FIG. 26 is a diagram showing an overview of collection
copy processing for a stripe column having a parity that is
created using data before compression according to Example
3.

FIG. 27 is a diagram showing an overview of the collec-
tion copy processing for a stripe column having a parity that
is created using data after compression according to
Example 3.

FIG. 28 is a flowchart of the collection copy processing
according to Example 3.

FIG. 29 is a configuration diagram of one example of a
READ/WRITE command according to Example 3.

FIG. 30 is a flowchart of READ processing according to
Example 3.

FIG. 31 is a flowchart of WRITE processing according to
Example 3.

FIG. 32 is a diagram showing an overview of function
implementation determination information registration pro-
cessing according to Example 4.

FIG. 33 is a diagram showing an overview of command
processing according to Example 4.

FIG. 34 is a flowchart of the command processing accord-
ing to Example 4.

DESCRIPTION OF EMBODIMENTS

Several examples will be described with reference to the
drawings. The examples described below do not limit the

10

15

20

25

30

35

40

45

50

55

60

65

4

invention set forth in the claims, and not all of various
components and combinations thereof described in the
examples is necessarily mandatory in the solution of the
invention.

Although there are cases where processing is described
with a “program” as the subject in the description below, the
subject of processing may be a program since a program is
executed by a processor (e.g., central processing unit (CPU))
to perform certain processing while appropriately using a
storage resource (e.g., memory) and/or a communication
interface device (e.g., port). Processing described with a
program as the subject may be processing performed by a
processor or a computer (e.g., management computer, host
computer, or storage system) having the processor. A pro-
cessor may include a hardware circuit that performs a part or
all of processing performed by the processor. A program
may be installed in each controller from a program source.
A program source may be, for example, a program distri-
bution server or recording medium.

EXAMPLE 1

An overview of a computer system including a storage
system according to Example 1 will be described.

As shown in FIG. 1, a storage system 10 may be an
apparatus formed of one enclosure or may be formed in
combination with an external storage apparatus 40, for
example. The storage system 10 includes a plurality of
storage devices such as, for example, a flash memory
package (FMPK) 160. In the storage system 10, a redundant
array of independent disks (RAID) group is formed using
the plurality of storage devices.

The storage area of each storage device is divided into and
managed in sub-storage areas called a stripe. That is, each
storage device includes a plurality of stripes. The storage
area of the RAID group is formed of a plurality of stripe
columns. Each stripe column includes one each of the stripes
included in the respective storage devices. That is, the stripe
column spans the plurality of storage devices forming the
RAID group.

There are several levels (hereinafter referred to as RAID
levels) to RAID.

In RAID 5, for example, write target data that is desig-
nated from a host computer 30 is divided into a plurality of
data elements, and the plurality of data elements are written
in a plurality of stripes of the same stripe column. In RAID
5, redundant information (hereinafter referred to as “redun-
dant code”) called “parity” is created from the plurality of
data elements included in the stripe column in order to
recover a data element that has become unreadable from a
storage device due to occurrence of a fault in the storage
device. The redundant code is also written in the stripe of the
same stripe column. For example, in the case where the
number of storage devices forming a RAID group is four,
three data elements forming a stripe column is written in
three stripes corresponding to three of the storage devices,
and the redundant code is written in a stripe corresponding
to the remaining one storage device. In this case, the stripe
column includes three data elements and a parity created
from the three data elements. In the case where one of the
data elements included in the stripe column including the
parity is updated, the parity is also updated. The parity is
created by, for example, an XOR operation of the plurality
of data elements included in the same stripe column. Here-
inafter, in the case where the data element and the redundant
code are not distinguished, the two may each be referred to
as a stripe data element.

US 9,465,561 B2

5

In RAID 6, two types of redundant codes (called P parity
and Q parity) are created with respect to each data unit and
each redundant code is written in a stripe of the same stripe
column, so that the two data elements can be recovered in
the case where two data elements out of a plurality of data
elements forming a data unit cannot be read due to a reason
such as a fault that has occurred in two storage devices out
of the plurality of storage devices forming a RAID group.

RAID levels (e.g., RAIDs 1 to 4) other than those
described above also exist. As a redundancy technique for
data, there are also triplication, triple parity technique using
three types of parities, and the like. Also regarding creation
techniques for a redundant code, various techniques exist
such as Reed-Solomon code using Galois arithmetic, Even-
0Odd, and the like. In this example, an example in which the
RAID level is RAID 5 will be mainly described. However,
this does not limit the present invention. Other RAID levels
are acceptable, and application may be with respect to a
RAID using other techniques described above.

When a data element of a stripe column is updated, a
redundant code for the stripe column is calculated and
updated. As a calculation method for a redundant code, there
are several methods depending on data used for calculating
the redundant code. A first method is a method (hereinafter
referred to as “all-stripe parity creation”) in which all data
elements of a stripe column are used for calculation. In the
case where the access pattern is a sequential write, the first
method is used in the case of updating all data elements
included in a stripe column, for example. A second method
is a method (hereinafter referred to as “read modify write
(RMW) parity creation”) in which data after update (new
data) and data before update (old data, i.e., data updated by
new data) for apart of data elements and a parity before
update (old parity) are used for calculation. In the case
where the access pattern is a random write, the second
method is used in the case where a part of data elements
included in a stripe column is updated, for example. The
all-stripe parity creation and the RMW parity creation may
be used separately in consideration of the load on the storage
system.

The RMW parity creation will be described below with
reference to FIG. 1. In the RMW parity creation, there are a
method (hereinafter, conventional RMW) in which neces-
sary data is read from the FMPK 160 into a CM 131 and a
BE controller 142 or an MP 121 creates a redundant code
and a method (hereinafter, offload RMW) in which a storage
device such as the FMPK 160 creates a redundant code.

In the offload RMW in which the FMPK 160 creates a
redundant code, a storage controller 11 utilizes commands
described below in addition to a conventional READ/WITE
command. One is an XDWRITE command used for trans-
ferring, to the FMPK 160, data (hereinafter, new data) that
the host computer 30 has transmitted and indicating parity
creation to the FMPK. The FMPK 160 that has received the
XDWRITE command creates intermediate data using the
transmitted new data and data (old data) stored in a storage
area of the FMPK 160 of which the address is the same as
the new data. Another one is an XDREAD command used
for reading the intermediate data that the FMPK 160 has
created. The FMPK 160 that has received the XDREAD
command transfers the intermediate data created based on
the XDWRITE command to a Buffer 143 of a BEPK 140. A
further one is an XPWRITE command used for creating a
redundant code (new parity) corresponding to the new data
based on the intermediate data and performing a write with
respect to a storage area of a storage address for a previous
redundant code (old parity). The FMPK 160 that has

5

10

15

20

25

30

40

45

50

55

60

6

received the XPWRITE command creates the new parity
using the transmitted intermediate data and the old parity
stored in the FMPK 160, and stores the new parity in a
corresponding address. In Example 1, these commands
include information with which whether an input-output
target is user data or a redundant code is identifiable, and are
examples of determination information.

Next, the computer system including the storage system
according to Example 1 will be described in detail.

FIG. 1 is a hardware configuration diagram of the com-
puter system according to Example 1.

The computer system includes one or more host comput-
ers (hereinafter, hosts) 30, a management computer 20, and
the storage system 10. The host computer 30 and the storage
system 10 are coupled via a network 50. The network 50
may be a local area network or may be a wide area network.
The management computer 20 and the storage system 10 are
coupled by an internal network 150. One or more external
storage apparatuses 40 may be coupled to the storage system
10 via the network 50. The external storage apparatus 40
includes one or more storage devices. The storage device
includes a non-volatile recording medium, e.g., magnetic
disk, flash memory, or other semiconductor memories.

The host 30 is, for example, a computer that executes an
application, and reads data utilized in the application from
the storage system 10 or writes data created with the
application in the storage system 10.

The management computer 20 is a computer used by an
administrator for executing management processing that
manages a computer system, and has an input device or a
display device. The management computer 20 accepts the
RAID level configuration with respect to a RAID group
through an operation by the administrator with respect to the
input device, and performs configuration with respect to the
storage system 10 such that a RAID group is formed with the
accepted RAID level.

The storage system 10 has one or more front-end pack-
ages (FMPKs) 100, one or more microprocessor packages
(MPPKs) 120, one or more cache memory packages
(CMPKs) 130, one or more back-end packages (BEPKs)
140, the internal network 150, and a plurality of flash
packages (FMPKs) 160. The FEPK 100, the MPPK 120, the
CMPK 130, and the BEPK 140 are coupled via the internal
network 150. The storage controller 11 is formed by the
FEPK 100, the MPPK 120, the CMPK 130, and the BEPK
140. The BEPK 140 is coupled with the FMPKs 160 via a
plurality of line paths. The storage device coupled to the
BEPK 140 is a non-volatile recording medium and may be,
for example, a magnetic disk, flash memory, or other semi-
conductor memories (such as a phase-change memory
(PRAM), resistance-change memory (ReRAM), or magne-
toresistive memory (MRAM)).

The FEPK 100 is one example of an interface device and
has one or more ports 101, an FE controller 112, and a buffer
113. The port 101 couples the storage system 10 with various
apparatuses via the network 50 or the like. The FE controller
112 controls communication with the host computer 30.

The MPPK 120 has the microprocessor (MP) 121 as one
example of a control device and a local memory (LM) 122.
The MP 121 and the LM 122 are coupled via an internal bus
123. The LM 122 stores various programs or various infor-
mation. The MP 121 executes the program stored in the LM
122 to execute various processing. The MP 121 transmits
various commands (e.g., a READ command or a Write
command in SCSI) to the FMPK 160 via the BEPK 140. The
MP 121 transmits various commands to the external storage
apparatus 40 via the FEPK 100. The creation processing of

US 9,465,561 B2

7

an redundant code is also implemented. For example, with
respect to a data unit of a RAID group formed with RAID
5, the MP 121 creates a redundant code (parity) through
exclusive disjunction (XOR) of a plurality of data elements
forming the data unit. With respect to a data unit of a RAID
group formed with RAID 6, the MP 121 creates a parity
through exclusive disjunction of respective pieces of data
after further multiplying a plurality of data elements forming
the data unit with a predetermined coefficient. The MP 121
performs recovery processing of recovering one of data
elements within a data unit based on one or more stripe data
elements (at least one of data element and parity) for the data
unit. The creation of parity may be performed by the MP 121
through execution of a program, or a parity creation circuit
may be used.

The CMPK 130 has the cache memory (CM) 131 and a
shared memory (SM) 132. The CM 131 temporarily stores
data (write data) to be written in the FMPK 160 or the like
from the host 30 or data (read data) read from the FMPK
160. The SM 132 stores information shared by a plurality of
the MPPKs 120 when the MPPK 120 executes various
processing.

The BEPK 140 has one or more ports 141, the BE
controller 142, and the Buffer 143. The port 141 couples the
storage system 10 and a storage device such as the FMPK
160. The BE controller 142 is, for example, a processor and
performs data transfer between the CMPK 130 and the
FMPK 160. The BEPK 140 may implement redundant code
creation processing instead of the MP 121. In this case, a
circuit for creating a redundant code may be within the
BEPK 140 or may be separate from the BEPK 140.

The Buffer 143 temporarily stores data transmitted from
the FMPK 160 or data to be transmitted to the FMPK 160.

The FMPK 160 stores data. The FMPK 160 has a com-
pression and decompression function of executing compres-
sion processing and decompression processing. In the case
where there has been a write request from the BEPK 140,
write target data can be compressed and stored in the
compressed state. In the case where there has been a read
request from the BEPK 140, data stored in the compressed
state in the FMPK 160 can be decompressed and transmitted
to the BEPK 140. In the case where the FMPK 160 has
received data from the storage controller 11, the data may be
compressed and then stored in a flash chip 166, or it may be
such that the data is temporarily stored in the flash chip 166
and the data is read from the flash chip 166 asynchronously
with writing of the data from the storage controller 11 and
compressed.

The storage controller 11 provides a logical volume to the
host computer 30. A logical volume is formed based on a
storage area of the plurality of FMPKs 160 included in a
RAID group. A logical volume is allocated with a storage
area in the entire logical address range of the logical volume.

The storage controller 11 can provide a virtual volume in
accordance with thin provisioning to the host computer 30.
At the stage of creation of the virtual volume, the volume
capacity is defined and the address range of the virtual
volume is configured, but a storage area is not allocated.
Upon receiving a write request from the host computer 30,
the storage controller 11 allocates a storage area (hereinafter
referred to as chunk) of a predetermined size to an area of
the virtual volume including an address designated in the
write request, and writes data involved in the write request.
A chunk is formed based on a storage area of the plurality
of FMPKs 160 included in a RAID group. The storage
controller 11 manages a plurality of chunks using a pool. A
pool includes a chunk based on a plurality of RAID groups.

10

15

20

25

30

35

40

45

50

55

60

65

8

That is, when the storage controller 11 receives a write
request with respect to a virtual volume, a chunk is selected
from the pool and allocated to the virtual volume. If the write
request is for an address range in which a chunk is already
allocated to the virtual volume, it is not necessary to newly
allocate a chunk. Hereinafter, a logical volume and a virtual
volume may be collectively referred to as volume.

FIG. 2 is a hardware configuration diagram of the FMPK
according to Example 1.

The FMPK 160 has a package controller 168 and one or
more flash chips 166. The package controller 168 has a
Buffer 161, a package memory 162, a package processor 163
as one example of a device controller, a compression-
decompression circuit 164, a bus transfer apparatus 165, a
communication IF 167, and a parity creation circuit 169.

The communication IF 167 receives data transmitted from
the BEPK 140. The Buffer 161 temporarily stores data
transmitted from the BEPK 140 or data to be transmitted to
the BEPK 140. The package memory 162 stores various
programs or various information. The package processor
163 executes the program stored in the package memory 162
to execute various processing. For example, the package
processor 163 causes execution of compression or decom-
pression of data with the compression-decompression circuit
164. The package processor 163 causes the parity creation
circuit 169 to execute creation (XOR operation) of a parity.
With the bus transfer apparatus 165, the package processor
163 causes execution of data input or output for the flash
chip 166. The flash chip 166 is one example of a recording
medium and is a flash memory chip. The FMPK 160
provides a logical address space with respect to an external
apparatus (the storage controller 11). The storage controller
11 designates a logical address in the logical address space
and transmits a read/write command or the like to the FMPK
160.

The flash memory is a non-volatile semiconductor record-
ing medium. The flash chip 166 has a plurality of blocks as
physical storage areas, and each block is a unit for data
erasure. Hach block has a plurality of pages, and each page
is a unit for a read/write of data. The flash memory has a
characteristic of being not overwritable in the case of
updating data stored in a page. Therefore, in the case of
updating data, the package processor 163 writes data in a
page (second page) different from a page (first page) in
which data before update is stored. The package processor
163 maps a logical address range that has been mapped to
the first page to the second page. Accordingly, the storage
controller 11 can access data after update without needing to
take into account the physical data storage position inside
the FMPK 160, as long as a logical address provided by the
FMPK 160 is accessed. In the package memory 162, con-
version information (logical-physical mapping information)
of a logical address and a physical page position (physical
address) is stored.

Processing in the FMPK 160 will be described below with
the package processor 163 as the main subject. However, the
package controller 168 can also execute transfer of data
within the FMPK 160 or compression/decompression pro-
cessing of data.

FIG. 3 is a diagram showing an overview of parity
creation processing at the time of a random write according
to Example 1.

The host computer 30 designates a volume number of a
logical volume provided by the storage controller 11 and an
address on a volume, and transmits a write request involving
write data. It is assumed that the write request is for updating
data (old data) already stored in the volume. Based on the

US 9,465,561 B2

9

volume number and the address on the volume designated
by the write request, the MP 121 identifies the FMPK 160
storing the data from among the plurality of FMPKs 160
forming a RAID group, and transmits the data to the FMPK
160.

In this example, the parity creation processing that has
conventionally been executed by the storage controller 11 is
executed by the FMPK 160. Accordingly, the load on the MP
121 that has controlled the parity creation processing is
reduced, and the processing performance of the storage
system 10 as a whole is improved. Further, by the FMPK
160 determining the necessity of data compression or
decompression as described below, the performance degra-
dation of the FMPK 160 due to compression or decompres-
sion is prevented. Processing involving parity creation and
data compression or decompression by the FMPK 160 will
be described below.

The MP 121 of the storage system 10 stores write data
(user data: hereinafter referred to as new D1) transmitted
from the host 30 in the CM 131 of the CMPK 130 via the
FEPK 100 ((1) in FIG. 3). Next, the MP 121 transfers the
new D1 to the Buffer 143 of the BEPK 140 ((2) in FIG. 3).
Next, the BE controller 142 issues an XDWRITE command
with respect to the FMPK 160 and transmits the new D1 ((3)
in FIG. 3). The XDWRITE command is transmitted with a
logical address corresponding to old data being designated.

The FMPK 160 that has received the XDWRITE com-
mand stores the transmitted new D1 in the Buffer 161 ((4)
in FIG. 3). Since the received command is the XDWRITE
command, the package processor 163 determines that the
received new D1 is user data, and stores the new D1 in the
flash chip 166 after compression with the compression-
decompression circuit 164 ((5) in FIG. 3). Data into which
new D1 is compressed is referred to as new cD1. Processing
in which the new D1 is compressed and stored in the flash
chip 166 may be implemented asynchronously with the
reception of the XDWRITE command.

The package processor 163 decompresses, with the com-
pression-decompression circuit 164, data (hereinafter, old
cD1) stored in the flash chip 166 and into which data before
update (old D1) corresponding to the new D1 is compressed,
acquires the old D1, and stores the old D1 in the Buffer 161
((6) in FIG. 3). Next, the package processor 163 creates
intermediate data (hereinafter, intermediate D1 that may be
called intermediate parity) utilized for creating a parity
(redundant code) of a stripe column including D1 from the
new D1 and the old D1 ((7) in FIG. 3). In this example, the
package processor 163 creates the intermediate D1 through
exclusive disjunction of the new D1 and the old D1.

Next, the MP 121 of the storage system 10 reads the
intermediate D1 into the Buffer 143 of the BEPK 140 from
the FMPK 160 by issuing an XDREAD command with
respect to the FMPK 160 ((8) in FIG. 3). Specifically, the
intermediate D1 is read from the Buffer 161 and transmitted
to the BEPK 140 by the FMPK 160 that has received the
XDREAD command. The BE controller 142 receives the
intermediate D1 and writes the intermediate D1 in the Buffer
143 of the BEPK 140.

Next, for the intermediate D1, the MP 121 of the storage
system 10 identifies the FMPK 160 storing a parity of a
stripe column including the D1, designates a logical address
corresponding to the old parity, issues an XPWRITE com-
mand, and transmits the intermediate D1. The FMPK 160
that has received the XPWRITE command stores the inter-
mediate D1 in the Buffer 161 ((9) in FIG. 3). Since the
received command is an XPWRITE command, the package
processor 163 reads, into the Buffer 161, a parity before

10

20

25

30

40

45

50

55

60

65

10

update (hereinafter, old P) of the stripe column including the
old D1 that is stored in the flash chip 166 ((10) in FIG. 3).
Next, the package processor 163 utilizes the intermediate D1
and the old P to create a parity (hereinafter, new P) corre-
sponding to the new D1 ((11) in FIG. 3). In this example, the
package processor 163 creates the new P through exclusive
disjunction of the intermediate D1 and the old P.

Next, the package processor 163 determines that the
received command is an XPWRITE command and that data
created based on the command is a parity, and stores the
created data, i.e., the new P, in the flash chip 166 without
compression ((12) in FIG. 3).

Since the parity is stored in the flash chip 166 without
compression in this manner, processing load in the FMPK
160 can be reduced. That is, decompression processing in
reading of the old P (10) is unnecessary, and compression
processing in writing processing of the new P (12) is
unnecessary. When one of data elements included in a stripe
column is updated, a parity of the stripe column is updated.
Therefore, the frequency of reading/writing of parity is
higher compared to user data, and a performance degrada-
tion prevention effect due to the corresponding compression/
decompression processing not being performed is large.
Meanwhile, since user data is compressed, the storage
capacity used in the storage system 10 can be reduced.
Although used for creation of the new parity, the interme-
diate parity is data that becomes unnecessary when the new
parity is stored in the flash chip 166. When the intermediate
parity is stored on a buffer and the new parity is created, the
intermediate parity does not need to be stored in the flash
chip 166. Therefore, the necessity of compressing the new
parity is small, and the package processor 163 can reduce the
overhead for compression processing by not compressing
the intermediate parity.

This example is effective with respect to the parity cre-
ation processing for a random write in the case of compress-
ing data. For example, in OLTP where a random write is
relatively frequent, a cost reduction effect due to data
compression and performance degradation prevention by
compression can both be achieved.

FIG. 4 is a flowchart of the parity creation processing at
the time of a random write according to Example 1.

The parity creation processing at the time of a random
write is executed in order to perform creation of a parity that
becomes necessary depending on the update of data, when
write data transferred from the host 30 that is stored in the
CM 131 by the MP 121 is to be stored in a storage device
such as the FMPK 160.

In the parity creation processing, the MP 121 detects write
data (new data) for which creation of a parity is not
implemented from the CM 131 (S41). Next, the MP 121
ensures an area in the Buffer 143 of the BEPK 140 in order
to transfer the new data to the FMPK 160, and stores the new
data therein (S42). Next, the MP 121 executes an
XDWRITE command with respect to the FMPK 160 (data
FMPK) storing data before update (old data) corresponding
to the new data (S43). Accordingly, the data FMPK that has
received the XDWRITE command executes XDWRITE
processing (see FIG. 5), performs an XOR operation using
the old data and the new data, and creates and stores, in the
Buffer 161 of the FMPK 160, intermediate data for creating
a parity. The details of the XDWRITE processing will be
described later.

Next, the MP 121 ensures an area in the Buffer 143 in
order to acquire the intermediate data from the FMPK 160
(S44). Next, the MP 121 executes an XDREAD command
with respect to the data FMPK (S45). Accordingly, the data

US 9,465,561 B2

11

FMPK that has received the XDREAD command executes
XDREAD processing (see FIG. 6) and transmits the inter-
mediate data to the BEPK 140. Accordingly, the intermedi-
ate data is stored in the Buffer 143 of the BEPK 140. The
details of the XDREAD processing will be described later.

Next, the MP 121 issues an XPWRITE command with
respect to the FMPK 160 (parity FMPK) storing a parity of
a stripe column corresponding to the new data, transmits the
intermediate data stored in the Buffer 143 (S46), and termi-
nates the parity creation processing. In the parity FMPK that
has received the XPWRITE command, XPWRITE process-
ing (see FIG. 7) of creating a parity based on the interme-
diate data is executed. The details of the XPWRITE pro-
cessing will be described later.

FIG. 5 is a flowchart of XDWRITE processing according
to Example 1.

The XDWRITE processing is executed when the FMPK
160 has received the XDWRITE command from the MP
121.

In the XDWRITE processing, the package processor 163
of'the FMPK 160 stores write data (new data) transferred by
the MP 121 in the Buffer 161 (S52), when the FMPK 160
receives the XDWRITE command from the MP 121 (S51).
Next, the package processor 163 determines from the
XDWRITE command that data (new data) as a target of
command is user data, and decompresses, with the com-
pression-decompression circuit 164, data stored in the flash
chip 166 into which old data (old data) corresponding to the
write data is compressed (S53). Next, the package processor
163 stores the decompressed old data in the Buffer 161
(S54). Next, the package processor 163 creates intermediate
data through an XOR operation of the new data and the old
data (S55). Next, the package processor 163 determines
from the XDWRITE command that the data (new data) as a
target of command is user data, and compresses the new data
with the compression-decompression circuit 164 (S56).
Next, the package processor 163 stores the compressed new
data in the flash chip 166 (S57). Accordingly, the user data
is compressed and stored in the flash chip 166. The com-
pression or decompression processing of data may be per-
formed by the package processor 163 without using the
dedicated compression-decompression circuit 164. The
XOR operation may be implemented using a dedicated
circuit.

FIG. 6 is a flowchart of XDREAD processing according
to Example 1.

The XDREAD processing is executed when the FMPK 16
has received the XDREAD command from the MP 121.

When the FMPK 160 receives the XDREAD command
(S61), the package processor 163 of the FMPK 160 deter-
mines whether or not there is intermediate data in an area of
the Buffer 161 corresponding to an address designated by the
XDREAD command (S62). In the case where the interme-
diate data exists as a result (S62: Yes), the package processor
163 responds with the intermediate data in the Buffer 161 to
the MP 121, and terminates the XDREAD processing. On
the other hand, in the case where the intermediate data does
not exist (S62: No), a response is made to the MP 121 with
an abnormal end response (S64), and the XDREAD pro-
cessing is terminated.

FIG. 7 is a flowchart of XPWRITE processing according
to Example 1.

The XPWRITE processing is executed when the FMPK
160 has received the XPWRITE command from the MP 121.

When the FMPK 160 receives the XPWRITE command
(S871), the package processor 163 of the FMPK 160 stores
the intermediate data transferred by the MP 121 in the Buffer

10

15

20

25

30

35

40

45

50

55

60

65

12

161 (S72). Next, since the received command is an
XPWRITE command and thus an input-output target is a
redundant code that does not need decompression, the
package processor 163 stores, in the Buffer 161, an old
redundant code (old parity) from the flash chip 166 without
decompression (S73). Next, the package processor 163
creates a new parity through an XOR operation of the
intermediate data and the old parity (S74). Next, since the
received command is an XPWRITE command and thus an
input-output target is a redundant code that does not need
compression, the package processor 163 stores the created
new parity in the flash chip 166 without compression (S75).

With this example, the storage device (FMPK 160 in this
example) can acknowledge whether or not input-output
target data is a redundant code from the type of command
issued from the storage controller 11, and the input-output
target data can be stored uncompressed in a storage medium
in the case of a redundant code. Therefore, processing load
on the storage device at the time of a random write can be
reduced, and the random write performance can be
improved. Since the redundant code is created by the storage
device, processing load on the storage controller 11 can be
reduced.

Although compression-decompression processing is
given as an example of addition processing executed by the
storage device in Example 1, the addition processing is not
limited to this and may be processing in which the state of
input-output data is changed or processing in which prede-
termined data (guarantee code or the like) is added to
input-output target data. For example, the addition process-
ing may be encryption processing in which input-output
target data is encrypted. Whether or not to execute process-
ing of determining whether or not to execute the addition
processing may be indicated from the management com-
puter 20 as ON/OFF.

EXAMPLE 2

Next, a computer system according to Example 2 will be
described. The computer system according to Example 2 is
basically similar to the computer system according to
Example 1 shown in FIG. 1. In the computer system
according to Example 2, the storage controller 11 transfers
determination information for determining whether or not it
is a redundant code to a storage device (e.g., FMPK 160),
and the storage device determines whether or not it is a
redundant code based on the determination information
transferred from the storage controller 11.

FIG. 8 is a diagram showing an overview of parity
determination information registration processing according
to Example 2.

The parity determination information registration pro-
cessing is executed in the storage system 10 before 10
processing is executed by the host 30, for example. Parity
determination information 124 (see FIG. 9) is, for example,
created in advance and stored in the LM 122.

The MP 121 of the MPPK 120 of the storage controller 11
transfers the parity determination information 124 stored in
the LM 122 to each FMPK 160. It suffices that the parity
determination information 124 transmitted to each FMPK
160 include information on an area managed by the FMPK
160. The FMPK 160 stores the transferred parity determi-
nation information 124 in the package memory 162 ((1) in
FIG. 8). When an IO command is issued with respect to the
FMPK 160, the parity determination information 124 is
utilized in determining whether or not data that is a target of
the IO command is a redundant code.

US 9,465,561 B2

13

FIG. 9 is a configuration diagram of one example of the
parity determination information according to Example 2.

The parity determination information 124 is information
that shows, for each address of each stripe of a logical
volume (logical VOL), whether or not data of the stripe is a
redundant code. The parity determination information 124
includes an address field 124a and an attribute field 1245.
The address field 124a stores a starting address for each
fixed size (stripe) from the start to end of the logical volume.
The address field 124a may store a start address and an end
address of the stripe. The attribute field 1245 stores a value
showing whether or not data stored in a stripe corresponding
to the starting address of the address field 1244 is a redun-
dant code. For example, the attribute field 1245 stores “data”
in the case where the data stored in the stripe is user data, and
the attribute field 1245 stores “parity” in the case where the
data stored in the stripe is a redundant code.

The parity determination information may hold an entry
for a plurality of stripes in a partial area of the logical VOL
and a repetition number thereof, instead of holding an entry
for stripes of the entire logical VOL.

Although it has been assumed that the parity determina-
tion information 124 is transmitted to the FMPK 160 from
the storage controller 11, it may be such that a RAID
configuration and a drive position in the RAID configuration
is notified from the storage controller 11 and the FMPK 160
creates the parity determination information 124 based on
the RAID configuration and the drive position. The parity
determination information 124 (or only information therein
on an area corresponding to the target of an 10 command)
may be embedded with respect to an IO command or with
respect to transfer data that is the target of the IO command
at the time of issuance of the IO command, and notified to
the FMPK 160, instead of the parity determination infor-
mation 124 being registered in the FMPK 160 from the
storage controller 11 in advance.

FIG. 10 is a diagram showing an overview of RMW parity
creation processing according to Example 2.

The MP 121 of the storage system 10 stores write data
(hereinafter, new D1) received from the host 30 in the CM
131 of the CMPK 130 via the FEPK 100 ((1) in FIG. 10).
The MP 121 issues a READ command to read old data
(hereinafter, old D1) stored in the same address as the new
D1 to the FMPK 160, and reads the old D1 ((2), (3), and (4)
in FIG. 10). Specifically, the FMPK 160 that has received
the READ command determines whether or not the old D1
is a redundant code based on the parity determination
information 124 stored in the package memory 162. Since
the old D1 is determined as not a redundant code, the FMPK
160 determines that the old D1 is compressed and stored in
the flash chip 166. Data into which the old D1 is compressed
is old ¢D1. The FMPK 160 decompresses the old cD1 stored
in the flash chip 166 with the compression-decompression
circuit 164 to acquire the old D1 ((2) in FIG. 10). The old
D1 is stored in the Buffer 161 ((3) in FIG. 10) and trans-
ferred to the Buffer 143 of the BEPK 140 designated in the
READ command ((4) in FIG. 10).

Next, the MP 121 issues a READ command to read a
redundant code (hereinafter, old P) corresponding to the old
D1 to the FMPK 160 storing the old P, and reads the old P
((5) and (6) in FIG. 10). Specifically, the FMPK 160 that has
received the READ command determines from the parity
determination information 124 that the old P is a redundant
code, and determines that the old P is stored in the flash chip
166 without compression. With the FMPK 160, the old P
from the flash chip 166 is stored in the Buffer 161 without

10

15

20

25

30

35

40

45

50

55

60

65

14

decompression ((5) in FIG. 10) and transferred to the Buffer
143 of the BEPK 140 designated in the READ command
((6) in FIG. 10).

Next, with the MP 121, data (old D and old P) stored in
the Buffer 143 by the FMPK 160 is read into the CMPK 130
((7) in FIG. 10), and a new redundant code (new P)
corresponding to the new D1 is created through an XOR
operation of the new D1, the old D1, and the old P and stored
in the CMPK 130 ((8) in FIG. 10).

The MP 121 transfers the new P of the CMPK 130 to the
Buffer 143 of the BEPK 140 ((9) in FIG. 10), and issues a
WRITE command to the FMPK 160 ((10) in FIG. 10). The
FMPK 160 that has received the WRITE command stores
the new P in the Buffer 161. Next, with the FMPK 160, the
new P is determined from the parity determination informa-
tion 124 as a redundant code and determined to be stored in
the flash chip 166 without compression. With the FMPK
160, the new P is taken out from the Buffer 161 and stored
in the flash chip 166 without compression ((11) in FIG. 10).

With this processing, the old P that is a redundant code
can be read without decompression to reduce processing
load on the storage device, and the new P can be written
without compressing the new P to reduce processing load on
the storage device.

FIG. 11 is a diagram showing an overview of all-stripe
parity creation processing according to Example 2.

The all-stripe parity creation processing is processing of
creating a redundant code that is executed in the case where
all data in a stripe column is stored in the CMPK 130.

The MP 121 of the storage system 10 stores write data
(hereinafter, new D1 to new Dn) received from the host 30
in the CM 131 of the CMPK 130 via the FEPK 100 ((1) in
FIG. 11). With the MP 121, a redundant code (new P)
corresponding to the write data is created by implementing
an XOR operation using all of data (new D1 to new Dn)
forming the same stripe column, and stored in the CMPK
130 ((2) in FIG. 11).

The MP 121 issues a WRITE command to WRITE the
new P with respect to the FMPK 160 via the BEPK 140 ((3)
in FIG. 11). The FMPK 160 that has received the WRITE
command stores the new P in the Buffer 161. The FMPK 160
determines from the parity determination information 124
that the new P is a redundant code, and determines to store
the new P in the flash chip 166 without compression. The
FMPK 160 stores the new P in the flash chip 166 without
compression ((4) in FIG. 11).

With this processing, the new P can be written without
compressing the new P to reduce processing on the storage
device.

FIG. 12 is a flowchart of parity creation processing
according to Example 2.

In the parity creation processing, a creation method for a
redundant code is changed depending on whether or not all
of data of the same stripe column is present. In the case
where all of data of the same stripe column is present, the
all-stripe write parity creation processing shown in FIG. 11
is implemented. On the other hand, in the case where all of
data of the same stripe column is not present, the RMW
parity creation processing shown in FIG. 10 is implemented.

In the parity creation processing, the MP 121 first detects
data (hereinafter, new D) before parity creation from within
the CMPK 130 (S121). Next, the MP 121 determines
whether data of a stripe column to which the new D belongs
is all stored within the CMPK 130 (S122).

In the case where all of the data of the stripe column to
which the new D belongs is present within the CMPK 130
as a result (S122: Yes), the MP 121 ensures an area in the

US 9,465,561 B2

15

CMPK 130 to store a redundant code (new P) corresponding
to the new D (S5129). Next, with the MP 121, the new P is
created by an XOR operation of all of data in the stripe
column to which the new D belongs that is in the CMPK
130, and stored in the area ensured in the CMPK 130 (S130).
Next, the MP 121 ensures an area for the new P in the Buffer
143 of the BEPK 140, and stores the new P in the area
(S131). Next, the MP 121 issues a WRITE command to
WRITE the new P with respect to the FMPK 160 storing a
redundant code corresponding to the stripe column (S132).
Accordingly, in the FMPK 160, WRITE processing (see
FIG. 14) is executed, and the new P is stored.

On the other hand, in the case where all of the data in the
stripe column to which the new D belongs is not present
within the CMPK 130 (S122: No), the MP 121 ensures an
area in the CMPK 130 and the Buffers 131 and 143 of the
BEPK 140 to store data (hereinafter, old D) before update of
the new D (S123). Next, the MP 121 issues a READ
command to READ the old D with respect to the FMPK 160
storing the old D (S124). Accordingly, in the FMPK 160,
READ processing (see FIG. 13) is executed, and the old D
is stored in the CMPK 130 and the Buffers 131 and 143 of
the BEPK 140.

Next, the MP 121 ensures an area in the CMPK 130 and
the Buffers 131 and 143 of the BEPK 140 to store a
redundant code (hereinafter, old P) corresponding to the old
D (S125). Next, the MP 121 issues a READ command to
READ the old P with respect to the FMPK 160 storing the
old P (8126). Accordingly, in the FMPK 160, READ pro-
cessing (see FIG. 13) is executed, and the old P is stored in
the CMPK 130 and the Buffers 131 and 143 of the BEPK
140.

Next, the MP 121 ensures an area to store the new P in the
CMPK 130 (S127). Next, with the MP 121, the new P is
created by an XOR operation of the new D, the old D, and
the old P, and stored in the ensured area (S128). Next, the
MP 121 ensures an area to store the new P in the Buffer 143
of'the BEPK 140 (S131). Next, the MP 121 issues a WRITE
command to WRITE the new P with respect to the FMPK
160 storing a redundant code corresponding to the stripe
column (S132). Accordingly, in the FMPK 160, WRITE
processing (see FIG. 14) is executed, and the new P is stored.

FIG. 13 is a flowchart of the READ processing according
to Example 2.

The READ processing is processing executed by the
FMPK 160 that has received a READ command.

Upon receiving the READ command (S141), the FMPK
160 uses the parity determination information 124 stored in
the package memory 162 and a READ target address within
the READ command to determine whether or not a READ
target is a redundant code (parity) (S142).

In the case where it is determined that the READ target is
not a redundant code as a result, i.e., in the case where the
READ target is data (user data) (S142: data), the FMPK 160
determines that the READ target, not being a redundant
code, is compressed and stored in the flash chip 166, and
decompresses READ target data with the compression-
decompression circuit 164 (S143). Next, the FMPK 160
stores the decompressed READ target data in the Buffer 161
(S144), and transmits the data with respect to the BEPK 140
(S145).

On the other hand, in the case where it is determined that
the READ target is a redundant code (S142: parity), the
FMPK 160 determines that the READ target, being a
redundant code, is stored in the flash chip 166 without
compression, and stores the redundant code as the READ
target in the Buffer 161 from the flash chip 166 without

10

15

20

25

30

35

40

45

50

55

60

65

16
decompression (S144). Next, the FMPK 160 transmits a
redundant code as the read target in the Buffer 161 with
respect to the BEPK 140 (S145).

With this READ processing, a redundant code can be read
without decompression to reduce processing load on the
storage device.

FIG. 14 is a flowchart of WRITE processing according to
Example 2.

The WRITE processing is processing executed by the
FMPK 160 that has received a WRITE command.

First, upon receiving the WRITE command (S151), the
FMPK 160 stores WRITE target data (user data or redundant
code) in the Buffer 161 (S152). Next, the FMPK 160 uses
the parity determination information 124 stored in the pack-
age memory 162 and an address of a WRITE target within
the WRITE command to determine whether or not the
WRITE target data is a redundant code (S153).

In the case where it is determined that the WRITE target
is not a redundant code as a result, i.e., in the case where the
WRITE target is data (user data) (S153: data), the FMPK
160 determines that the WRITE target, not being a redundant
code, is compressed and stored in the flash chip 166,
compresses the WRITE target data with the compression-
decompression circuit 164 (S154), and stores the WRITE
target data in the flash chip 166 (S155).

On the other hand, in the case where it is determined that
the WRITE target is a redundant code (S153: parity), the
FMPK 160 determines that the WRITE target, being a
redundant code, is stored in the flash chip 166 without
compression, and stores the redundant code in the flash chip
166 without compression (S155).

With this WRITE processing, a redundant code can be
written without compression to reduce processing load on
the storage device.

FIG. 15 is a diagram showing an overview of collection
copy processing according to Example 2.

The collection copy processing is processing that is
executed in order to recover data stored in a failed storage
device, when a part of storage devices forming a RAID
group has failed.

First, with the MP 121, a READ command to READ data
(hereinafter, D2 to Dn) and a redundant code (hereinafter, P)
of a stripe column including recovery target data (hereinaf-
ter, D1) is issued to each FMPK 160, and the D2 to Dn and
the P are acquired from the FMPK 160 and stored in the
CMPK 130 ((1) to (5) in FIG. 15). Next, the MP 121
recovers the D1 by an XOR operation of the data (D2 to Dn)
and the P stored in the CMPK 130 ((6) in FIG. 15). Next, the
MP 121 issues a WRITE command to WRITE the D1 with
respect to the spare FMPK 160 in which the D1 is to be
stored ((7) and (8) in FIG. 15). Accordingly, in the FMPK
160, the WRITE processing is executed, and the D1 is
compressed and stored in the flash chip 166 ((9) in FIG. 15).
The READ processing and the WRITE processing executed
with the FMPK 160 that has received a READ/WRITE
command issued in the collection copy processing are as
shown in FIG. 13 and FIG. 14.

FIG. 16 is a flowchart of the collection copy processing
according to Example 2. FIG. 16 is a flowchart with which
the collection copy processing shown in FIG. 15 is realized.

First, the MP 121 registers the parity determination infor-
mation 124 with respect to the spare FMPK 160 with a
method shown in FIG. 8 (S161). Next, the MP 121 ensures
an area to store the data and the redundant code of the stripe
column in the Buffer 143 of the BEPK 140 and the CMPK
130 (S162). Next, the MP 121 issues, to each FMPK 160, a
READ command to READ the data (hereinafter, D2 to Dn)

US 9,465,561 B2

17

and the redundant code (hereinafter, P) of the stripe column
in which a processing target is present, excluding the data
(hereinafter, D1) that has been stored in the FMPK 160 in
which a failure has occurred (S163). Accordingly, in the
FMPK 160, the READ processing (see FIG. 13) is executed,
and the D2 to Dn and the P are stored in the CMPK 130 and
the Buffers 131 and 143 of the BEPK 140.

Next, the MP 121 recovers the D1 that has been stored in
the failed FMPK 160 by an XOR operation of the D2 to Dn
and the P (S164). Next, the MP 121 ensures an area for
storage in the Buffer 143 of the BEPK 140 and stores the D1
(S165). Next, the MP 121 issues a WRITE command to
WRITE the recovered D1 in the spare FMPK 160 (5166).
Accordingly, in the FMPK 160, the WRITE processing (see
FIG. 14) is executed, and the D1 is stored in the flash chip
166.

Next, the MP 121 determines whether or not recovery has
been done up to data in the last area of the failed FMPK 160
(S8167). In the case where recovery has not been done up to
the last area as a result (S167: No), the MP 121 changes the
processing target to the next area (S168), and implements
processing of S162 to S167 for the area of the processing
target. On the other hand, in the case where recovery has
been done up to the last area (S167: Yes), the MP 121
terminates the collection copy processing.

Although the compression processing has been described
as an example of the addition processing executed by the
storage device in this example, the addition processing may
be encryption processing. Whether or not to execute pro-
cessing of determining whether or not to execute the addi-
tion processing may be indicated from the management
computer 20 as ON/OFF.

EXAMPLE 3

Next, a computer system according to Example 3 will be
described. The computer system according to Example 3 is
basically similar to the computer system according to
Example 1 shown in FIG. 1. In the computer system
according to Example 3, the storage controller 11 transfers
determination information for determining whether or not it
is a redundant code to a storage device (e.g., FMPK 160),
and the storage device determines whether or not it is a
redundant code based on the determination information
transferred from the storage controller 11 and the type of
command. A determination method for a redundant code
may be either one of methods described in Example 1 and
Example 2. In Example 3, there are two methods to creation
methods for a redundant code. One is a method in which a
redundant code is created based on data before compression
in a similar manner to Example 1, and another one is a
method in which a redundant code is created based on data
after compression. When a redundant code is created with
respect to data after compression, it is possible to recover
data (or, accurately, compressed data to be stored in the flash
chip 166) without compression/decompression not only for
the redundant code but also for the data in recovery pro-
cessing (hereinafter, rebuild) in the case where a fault has
occurred in one of storage devices forming a RAID group.
Thus, it is possible to increase the speed of rebuild process-
ing.

FIG. 17 is a diagram showing an overview of RMW parity
creation processing in the case of creating a parity using data
after compression according to Example 3.

First, from the FMPK 160 storing a redundant code of a
stripe column corresponding to WRITE data (hereinafter,
new D1), the MP 121 acquires parity creation trigger infor-

10

15

20

25

30

35

40

45

55

60

65

18

mation (creation trigger information) showing whether or
not an old redundant code (old P) of the stripe column
corresponding to the new D1 is created with respect to data
after compression ((1) and (2) in FIG. 17). The MP 121
determines whether or not the redundant code is created with
respect to data after compression based on the acquired
information. In an example of FIG. 17, the old P is deter-
mined as a redundant code created with respect to data after
compression. The MP 121 issues an XDWRITE command
with respect to the FMPK 160 with the new D1 as a target
((3) in FIG. 17). At this time, the MP 121 provides the
XDWRITE command with information indicating creation
of a redundant code with respect to data after compression.
(Hereinafter, a command provided with information indi-
cating creation of a redundant code with respect to data after
compression is mentioned with (RAW) provided after a
command name.) The FMPK 160 that has received an
XDWRITE(RAW) command stores the new D1 in the
Buffer 161.

Next, the FMPK 160 stores compressed data (hereinafter,
old cD1) of data before update (hereinafter old D1) of the
new D1 in the Buffer 161 from the flash chip 166 ((4) in FI1G.
17). Next, the FMPK 160 compresses the new D1 with the
compression-decompression circuit 164 to create com-
pressed data (new cD1), and stores the new c¢D1 in the flash
chip 166 ((5) in FIG. 17). Next, the FMPK 160 stores the
new cD1 in the Buffer 161 ((6) in FIG. 17). Next, the FMPK
160 inserts padding (pad in the figure) for adjusting the size
of the new ¢D1 and the old c¢D1 ((7) in FIG. 17). As a
method of creating data inserted with padding, creation may
be through overwriting with the new ¢D1 in an area of a
predetermined length in which a value for padding (e.g., O
or the like) is stored in advance, creation may be through the
FMPK 160 adding a value for padding with respect to the
new cD1, or there may be a provision at the time of transfer
by hardware such as the bus transfer apparatus 165. In
examples below, processing of creating data inserted with
padding may be any one of the methods.

Next, the FMPK 160 creates intermediate data (interme-
diate ¢cD1) for creating a redundant code by implementing an
XOR operation of the new c¢D1 and the old ¢D1 for which
the data sizes have been matched by inserting padding ((8)
in FIG. 17). Next, with the FMPK 160, the intermediate cD1
is provided with size information (SizecD1) of the new cD1
and is stored in the Buffer 161 ((9) in FIG. 17). The size
information may be embedded in data or may be embedded
in a command. The size information is held for each
compression block unit. Instead of providing the size infor-
mation, a terminal symbol may be embedded at the end of
each compression block of the data (new cD1).

Next, the MP 121 issues an XDREAD (RAW) command
with respect to the FMPK 160, and reads the intermediate
cD1 into the Buffer 143 of the BEPK 140 ((10) in FIG. 17).
Next, the MP 121 issues an XPWRITE (RAW) command
with respect to the FMPK 160 storing a parity of a stripe
column corresponding to the D1 ((11) in FIG. 17). The
FMPK 160 that has received the XPWRITE(RAW) com-
mand stores the intermediate cD1, the SizecDI1, and the
parity creation trigger information transferred by the
XPWRITE command in the Buffer 161.

Next, the FMPK 160 reads, into the Buffer 161, a redun-
dant code (old P) corresponding to the old D1 and size
information (Size) of each piece of data within a parity stripe
provided to the redundant code ((12) in FIG. 17). Next, the
FMPK 160 inserts padding into each compression block of
the intermediate cD1 so that the size matches with the old P
((13) in FIG. 17). Next, the FMPK 160 creates a redundant

US 9,465,561 B2

19

code (hereinafter, new P) corresponding to the new D1 by an
XOR operation of the intermediate ¢cD1 and the old P of
which the sizes match ((14) in FIG. 17). Next, with the
FMPK 160, the size information corresponding to the D1
within the Size is updated and provided to the new P based
on the SizecD1, and the new P is provided with information
(post) showing that a parity has been created after compres-
sion as the parity creation trigger information and is stored
in the flash chip 166 ((15) and (16) in FIG. 17). The Size or
the parity creation trigger information provided to the redun-
dant code may be embedded in data, may be held in the
package memory 162 or the like as information correspond-
ing to an address, or may be held in the LM 122 of the
MPPK 120 as information corresponding to an address.

FIG. 18 is a diagram showing an overview of the RMW
parity creation processing in the case of creating a parity
using data before compression according to Example 3.
Since there is a portion in the RMW parity creation pro-
cessing that is similar to the parity creation processing in
Example 1 shown in FIG. 3, description for the similar
portion is omitted, and only the difference will be described.

First, the MP 121 acquires the parity creation trigger
information of a redundant code (old P) corresponding to the
new D1 from the FMPK 160 in order to determine the
creation trigger for a parity ((1) and (2) in FIG. 18). The MP
121 determines whether or not the redundant code is created
with respect to data after compression based on the acquired
information. In an example of FIG. 18, the old P is deter-
mined as a redundant code created with respect to data
before compression. Next, the MP 121 issues an XDWRITE
command and an XDREAD command with respect to the
FMPK 160 in a similar manner to the example of FIG. 3, and
acquires the intermediate D1 ((3) to (8) in FIG. 18). Next,
the MP 121 provides the parity creation trigger information
(before compression) to the intermediate D1, and issues an
XPWRITE command with respect to the FMPK 160 ((9) in
FIG. 18). The FMPK 160 that has received the XPWRITE
command creates the new P in a similar manner to the
example of FIG. 3 ((10) in FIG. 18). Next, with the FMPK
160, the parity creation trigger information (before com-
pression) is provided to the new P and stored in the flash chip
166 ((11) and (12) in FIG. 18).

FIG. 19 is a diagram showing an overview of all-stripe
parity creation processing according to Example 3. Since
there is a portion in the all-stripe parity creation processing
according to Example 3 that is similar to the all-stripe parity
creation processing shown in FIG. 11, description for the
similar portion is omitted, and only the difference will be
described.

First, the MP 121 creates the new P in a similar manner
to FIG. 11 ((1) and (2) in FIG. 19). Next, by issuing a
WRITE command (WRITE(D) in FIG. 19) to WRITE the
new D1 to new Dn, to the FMPK 160, the MP 121 performs
a WRITE with respect to the FMPK 160 ((3) in FIG. 19).
Next, the FMPK 160 provides the parity creation trigger
information (before compression: pre) with respect to the
new P, and issues a WRITE command (WRITE(P) in FIG.
19) to WRITE this data to the FMPK 160 ((4) in FIG. 19).
In the FMPK 160 that has received the WRITE command,
WRITE processing is executed, and the new P provided with
the parity creation trigger information is stored in the flash
chip 166 ((5) in FIG. 19).

FIG. 20 is a configuration diagram of one example of an
XDREAD/XDWRITE/XPWRITE command according to
Example 3.

A command 170 of the XDREAD/XDWRITE/XPWRITE
command includes a command type 170a, an LBA 1704, a

30

40

45

50

55

65

20

transfer length 170¢, a parity creation trigger 1704, a com-
pression block number 170e, and a compression block size
170f. The command type 170a shows the type of command.
As the command type, XDREAD, XDWRITE, or
WPWRITE is configured, for example. The LBA 1705 is a
logical block address of a logical VOL. The transfer length
170c¢ is the length of data transferred by a command. The
parity creation trigger 1704 is parity creation trigger infor-
mation showing whether to create a parity with respect to
data after compression or to create a parity with respect to
data before compression. The parity creation trigger 1704 is
configured as “after compression (post)” in the case of
creating a parity with respect to data after compression, and
is configured as “before compression (pre)” in the case of
creating a parity with respect to data before compression.
The compression block number 170¢ is a field that is valid
only when the parity creation trigger 1704 is “after com-
pression,” and is a value showing the number of compres-
sion blocks included within data to be transferred. The
compression block size 170fis a field that is valid only when
the parity creation trigger 1704 is “after compression,” and
the command 170 has the compression block sizes 170f'in a
number corresponding to the compression blocks. Each
compression block size 170fis a size of each compression
block after compression. The parity creation trigger 1704,
the compression block number 170e, and the compression
block size 170f may be embedded in data instead a com-
mand.

FIG. 21 is a flowchart of parity creation processing
according to Example 3. Portions similar to the parity
creation processing according to Example 2 shown in FIG.
12 are denoted by the same reference signs, and redundant
descriptions will be omitted.

The MP 121 determines whether or not all of data of a
stripe column to which data as a target of parity creation
belongs is present (S122). In the case where not all of the
data of the stripe column is present as a result (S122: No),
the RMW parity creation processing (see FIG. 22) is
executed (S212), and processing is terminated. On the other
hand, in the case where all of the data of the stripe column
is present (S122: Yes), the MP 121 creates the new P in a
similar manner to FIG. 12 (S129 to S131), and provides the
parity creation trigger information (before compression) to
the new P (S211). Next, the MP 121 issues a WRITE
command with respect to the FMPK 160 (S132), and ter-
minates processing.

FIG. 22 is a flowchart of the RMW parity creation
processing according to Example 3. Portions similar to the
parity creation processing shown in FIG. 4 are denoted by
the same reference signs.

First, the MP 121 acquires the parity creation trigger
information from the FMPK 160 storing a redundant code,
and determines which one the parity creation trigger is
(S221).

In the case where the parity creation trigger is after
compression as a result (S221: after compression), the MP
121 issues an XDWRITE command to the FMPK 160 (S43).
At this time, the XDWRITE command is provided with the
parity creation trigger information showing that the parity
creation trigger is after compression. The MP 121 issues an
XDREAD (RAW) command to READ intermediate data to
the FMPK 160 (S45). Next, the MP 121 provides the parity
creation trigger information (after compression) to the inter-
mediate data that has been READ (S5227). Next, the MP 121
issues an XPWRITE (RAW) command with respect to the
FMPK 160 (S47).

US 9,465,561 B2

21

On the other hand, in the case where the parity creation
trigger is before compression (S221: before compression),
the MP 121 issues an XDWRITE command to the FMPK
160. At this time, the command is provided with information
that the parity creation trigger is before compression (S43).
The MP 121 issues an XDREAD (CMP) command to READ
intermediate data from the FMPK 160 (S45). Next, the MP
121 provides the parity creation trigger information (before
compression) to the intermediate data that has been READ
(S222). Next, the MP 121 issues an XPWRITE(CMP)
command with respect to the FMPK 160 (S47).

FIG. 23 is a flowchart of the XDWRITE processing
according to Example 3. Portions similar to the XDWRITE
processing according to Example 1 shown in FIG. 5 are
denoted by the same reference signs, and the difference from
the processing will be mainly described.

The XDWRITE processing is processing that is executed
in the case where the FMPK 160 has received an XDWRITE
command. In the case where the XDWRITE command has
been received, the FMPK 160 executes the processing,
assuming that a target of the command is not a redundant
code.

After receiving the XDWRITE command (after S51 and
S52), the FMPK 160 determines which one the parity
creation trigger with respect to data that is the target of the
XDWRITE command is (S231).

In the case where the parity creation trigger is before
compression as a result (S231: before compression), the
FMPK 160 executes processing of steps S53 to S57, and
terminates the XDWRITE processing.

On the other hand, in the case where the parity creation
trigger is after compression (S231: after compression), the
FMPK 160 acquires compressed data (hereinafter, new cD1)
into which the new D1 is compressed with the compression-
decompression circuit 164 (S232), and stores the new cD1
in the flash chip 166 (S233). Next, the FMPK 160 reads the
new cD1 from the flash chip 166 into the Buffer 161 (S234).
Next, the FMPK 160 stores old data after compression (old
cD1) in the Buffer 161 (S235). Next, the FMPK 160 inserts
padding in each compression block, such that the data sizes
of the new ¢D1 and the old ¢cD1 match (S236). Next, the
FMPK 160 creates intermediate data (hereinafter, interme-
diate cD1) by an XOR operation of the new c¢D1 and the old
cD1 of which the sizes have been caused to match (S237).
Next, the FMPK 160 provides the size information after
compression of each compression block within the new c¢D1
(S238) to the intermediate cD1, and terminates the
XDWRITE processing.

FIG. 24 is a flowchart of XDREAD processing according
to Example 3. Portions similar to the XDREAD processing
according to Example 1 shown in FIG. 6 are denoted by the
same reference signs, and the difference from the processing
will be mainly described.

The XDREAD processing is processing that is executed
in the case where the FMPK 160 has received an XDREAD
command. In the case where the XDREAD command has
been received, the FMPK 160 executes the processing,
assuming that a target of the command is not a redundant
code.

In the case where there is intermediate data that is an
XDREAD target (S62: Yes), the FMPK 160 determines
which one the parity creation trigger is (S241).

In the case where the parity creation trigger is before
compression as a result (S241: before compression), the
FMPK 160 executes processing of step S63, and terminates
the XDREAD processing. On the other hand, in the case
where the parity creation trigger is after compression (S241:

10

15

20

25

30

35

40

45

50

55

60

65

22

after compression), the FMPK 160 transmits the intermedi-
ate data of the Buffer 161 and the size information provided
to the intermediate data together to the MP 121 (S242).

FIG. 25 is a flowchart of XPWRITE processing according
to Example 3. Portions similar to the XPWRITE processing
according to Example 1 shown in FIG. 7 are denoted by the
same reference signs, and the difference from the processing
will be mainly described.

The XPWRITE processing is processing that is executed
in the case where the FMPK 160 has received an XPWRITE
command. In the case where the XPWRITE command has
been received, the FMPK 160 executes the processing,
assuming that a target of the command is a redundant code.

Following step S73, the FMPK 160 determines which one
the parity creation trigger of the XPWRITE command is
(S251).

In the case where it is determined that the parity creation
trigger is before compression as a result (S251: before
compression), the FMPK 160 determines which one the
parity creation trigger of an old parity is (S259). In the case
where it is determined that the parity creation trigger of the
old parity is after compression as a result (S259: after
compression), the parity creation trigger is not consistent.
Therefore, the FMPK 160 responds with an abnormal end to
the MP 121 (S253), and terminates the processing.

On the other hand, in the case where it is determined that
that parity creation trigger of the old parity is before com-
pression (S259: before compression), the FMPK 160 creates
the new P by an XOR operation of the intermediate data and
the old parity (S260), provides the parity creation trigger
(before compression) to the new P (S261), stores the new P
in the flash chip 166 (S262), and terminates the processing.

In the case where it is determined that the parity creation
trigger is after compression in step S251 (S251: after com-
pression), the FMPK 160 determines which one the parity
creation trigger of the old parity is (S252). In the case where
it is determined that the parity creation trigger of the old
parity is before compression as a result (S252: before
compression), the parity creation trigger is not consistent.
Therefore, the FMPK 160 responds with an abnormal end to
the MP 121 (S253), and terminates the processing.

On the other hand, in the case where it is determined that
the parity creation trigger of the old parity is after compres-
sion (S252: after compression), the FMPK 160 implements
padding for each compression block of the intermediate data
based on the size information (S254). Next, the FMPK 160
creates the new P through an XOR operation of the inter-
mediate data for which padding has been implemented and
the old P (S255). Next, based on the size information
provided to the intermediate data, the FMPK 160 updates the
size information that has been provided to the old P and
stored to the size information corresponding to the new P
(S256). Next, with the FMPK 160, the new P is provided
with the parity creation trigger (after compression) (S257)
and stored in the flash chip 166 (S258), and the processing
is terminated.

With this processing, creation based on data before com-
pression and creation based on data after compression can be
switched and executed for a parity of each piece of data, in
accordance with the parity creation trigger. Therefore, by
determining the parity creation trigger in accordance with
the characteristic of each piece of data, a parity at an
appropriate trigger can be created.

FIG. 26 is a diagram showing an overview of collection
copy processing for a stripe column having a parity that is
created using data before compression according to Example
3. Since there is a portion in the collection copy processing

US 9,465,561 B2

23

that is similar to the collection copy processing in Example
2 shown in FIG. 15, description for the similar portion is
omitted, and only the difference will be described.

The MP 121 acquires the parity creation trigger informa-
tion of a redundant code of a stripe column that is a
processing target from the FMPK 160 ((1) and (2) in FIG.
26), and determines that creation of a parity has been
implemented before compression for the stripe column.
Next, with the MP 121, the D1 is recovered in a similar
manner to FIG. 15 ((3) in FIG. 26) and stored in the spare
FMPK 160 ((4) in FIG. 26). At this time, a READ/WRITE
command is provided with the parity creation trigger infor-
mation (before compression). A command provided with the
parity creation trigger information (before compression) is
described with (CMP) provided after a command name.

FIG. 27 is a diagram showing an overview of the collec-
tion copy processing for a stripe column having a parity that
is created using data after compression according to
Example 3. Since there is a portion in the collection copy
processing that is similar to the collection copy processing
shown in FIG. 26, description for the similar portion is
omitted, and only the difference will be described.

The MP 121 acquires the parity creation trigger from the
FMPK 160, and determines that parity creation has been
implemented after compression ((1) and (2) in FIG. 27).
Next, the MP 121 acquires the size information after com-
pression of data within a stripe from the FMPK 160 ((3) in
FIG. 27). Next, the MP 121 issues a READ command to
READ data (D2 to Dn) and a redundant code (P) from each
FMPK 160, and acquires the same ((4) to (8) in FIG. 27). At
this time, the MP 121 provides the compression necessity
information (compression unnecessary) to the READ com-
mand. The FMPK 160 that has received a READ command
(CMP) makes a response to the MP 121 without decom-
pressing data after compression that is stored within the flash
chip 166, based on the compression necessity information.

Next, the MP 121 inserts padding to each compression
block of data after compression based on the size informa-
tion, such that the data sizes match ((9) in FIG. 27). Next, the
MP 121 creates data in which padding is inserted in recovery
target data (cD1) after compression by an XOR operation of
each piece of data inserted with padding and the P ((10) in
FIG. 27). Next, based on the size information, the MP 121
eliminates padding to create the cD1 ((11) in FIG. 27). Next,
the MP 121 issues a WRITE command to WRITE the cD1
with respect to the spare FMPK 160 ((12) in FIG. 27). At this
time, the MP 121 provides the compression necessity infor-
mation (compression unnecessary) to the WRITE command.
The FMPK 160 that has received the WRITE command
stores the cD1 in the flash chip 166 without compression,
based on the compression necessity information ((13) in
FIG. 27). It may be such that the FMPK 160 receives the size
information from the MP 121, and the FMPK 160 executes
processing of adding/deleting padding based on the size
information. In the CMPK 130, data after compression and
data before compression are managed separately, and data
after compression cannot be seen from a host.

FIG. 28 is a flowchart of the collection copy processing
according to Example 3. Portions similar to the collection
copy processing according to Example 2 shown in FIG. 16
are denoted by the same reference signs, and the difference
from the processing will be mainly described.

The MP 121 acquires the parity creation trigger from the
FMPK 160 storing a parity of a stripe column that is a
recovery target (S281). Next, the MP 121 determines which
one the parity creation trigger is (S282).

10

15

20

25

30

35

40

45

50

55

60

65

24

In the case where the parity creation trigger is before
compression as a result (S282: before compression), the MP
121 executes processing of steps S163 to S166, and proceeds
to step S167 of the processing.

On the other hand, in the case where the parity creation
trigger is after compression (S282: after compression), the
MP 121 acquires the size information after compression of
data within a parity stripe from the FMPK 160 storing a
parity (S283). Next, the MP 121 issues a READ command
to READ data (cD2 to ¢Dn) and a redundant code (herein-
after, P) within a stripe column necessary for recovery from
the FMPK 160 (S284). At this time, the MP 121 provides the
compression necessity information (compression unneces-
sary) to the READ command. Accordingly, for the target
data and the redundant code, the FMPK 160 that has
received the READ command directly reads, from the flash
chip 166, and returns compressed data. Thus, in the FMPK
160, processing of decompressing data is not performed, and
processing load can be reduced. Next, based on the size
information, the MP 121 inserts padding in each compres-
sion block of the data, such that the sizes of the ¢cD2 to ¢cDn
and the P match (S285).

Next, using the cD2 to cDn and the P, the MP 121 recovers
data in which padding is inserted in recovery target data
(hereinafter cD1) (S286). Next, based on the size informa-
tion, the MP 121 deletes padding from the recovered data to
create the cD1 that is the recovery target (S287). Next, the
MP 121 ensures an area for and stores the cD1 in the BEPK
140 (S288), and issues a WRITE command to WRITE the
cD1 with respect to the spare FMPK 160 (S289). At this
time, the MP 121 provides the compression necessity infor-
mation information (compression unnecessary) to the
WRITE command. Accordingly, the FMPK 160 that has
received the WRITE command stores the cD1 in the flash
chip 166 without compression. Accordingly, the MP 121
does not perform compression processing, and processing
load is reduced. Then, the MP 121 proceeds to step S167 of
the processing.

In the case where the parity creation trigger with respect
to recovery target data is after compression in the collection
copy processing, the recovery target data (strictly speaking,
compressed data of the recovery target data) can be recov-
ered in the flash chip 166 without compression/decompres-
sion with the FMPK 160 not only for a parity but also for
data, enabling a reduction in processing load on the FMPK
160 and an increase in the speed of rebuild processing.

FIG. 29 is a configuration diagram of one example of a
READ/WRITE command according to Example 3.

A command 171 of the READ/WRITE command
includes a command type 171a, an LBA 17154, a transfer
length 171¢, and a compression implementation necessity
171d. The command type 171a shows the type of command.
As the command type, READ or WRITE is configured, for
example. The LBA 1716 is a logical block address of a
logical VOL. The transfer length 171c is the length of data
transferred by a command. The compression implementa-
tion necessity 1714 is information showing whether or not to
implement compression/decompression processing within
the FMPK 160 with respect to READ/WRITE target data. In
the case where the value of the compression implementation
necessity 1714 is implementation necessary, the FMPK 160
implements the compression/decompression processing
inside thereof to implement READ/WRITE. However, in the
case where the FMPK 160 has determined that the READ/
WRITE target is a redundant code from the parity determi-
nation information 124, READ/WRITE processing is imple-
mented without the compression/decompression processing

US 9,465,561 B2

25

being implemented within the FMPK 160 even if the value
of the compression implementation necessity 1714 is imple-
mentation necessary. In the case where the value of the
compression implementation necessity 1714 is implemen-
tation unnecessary, the FMPK 160 implements the compres-
sion/decompression processing inside thereof to implement
READ/WRITE processing.

FIG. 30 is a flowchart of the READ processing according
to Example 3. Portions similar to the READ processing
according to Example 2 shown in FIG. 13 are denoted by the
same reference signs, and the difference from the processing
will be mainly described.

Upon receiving a READ command (S141), the FMPK
160 determines which one the compression implementation
necessity 1714 is (S301).

In the case where the compression implementation neces-
sity 171d is implementation necessary as a result (S301:
implementation necessary), the FMPK 160 executes pro-
cessing of steps S142 to S145 in a similar manner to FIG. 13.

On the other hand, in the case where the compression
implementation necessity 1714 is implementation unneces-
sary (S301: implementation unnecessary), the FMPK 160
stores, in the Buffer 161, data after compression that is a
READ target stored in the flash chip 166 without decom-
pression (S144). Next, the FMPK 160 transmits READ
target data to the BEPK 140 (S145), and terminates the
READ processing.

FIG. 31 is a flowchart of WRITE processing according to
Example 3. Portions similar to the WRITE processing
according to Example 2 shown in FIG. 14 are denoted by the
same reference signs, and the difference from the processing
will be mainly described.

Upon receiving a WRITE command (S151), the FMPK
160 receives a WRITE target in the Buffer 161 (S152), and
determines which one the compression implementation
necessity 1714 is (S311).

In the case where the compression implementation neces-
sity 171d is implementation necessary as a result (S311:
implementation necessary), the FMPK 160 executes pro-
cessing of steps S153 to S155 in a similar manner to FIG. 14.

On the other hand, in the case where the compression
implementation necessity 1714 is implementation unneces-
sary (S311: implementation unnecessary), the FMPK 160
stores, in the flash chip 166, WRITE target data stored in the
Buffer 161 without compression (S155).

Although the compression processing has been described
as an example of the addition processing executed by the
storage device in this example, the addition processing may
be encryption processing. In the case where the addition
processing is encryption processing, holding of the size
information and processing (padding processing) in which
data sizes are caused to match as described above are
unnecessary, since the data size does not change after
execution of processing with respect to data, unlike in the
compression processing. Whether or not to execute process-
ing of determining whether or not to execute the addition
processing may be indicated from the management com-
puter 20 as ON/OFF.

EXAMPLE 4

Next, a computer system according to Example 4 will be
described. The computer system according to Example 4 is
basically similar to the computer system according to
Example 1 shown in FIG. 1. In the computer system
according to Example 4, a storage device (e.g., FMPK 160)
having a function for addition processing such as a function

10

15

20

25

30

35

40

45

50

55

60

65

26

for compression processing or function for encryption pro-
cessing controls implementation or non-implementation of
the addition processing, based on information notified from
a higher-level apparatus (e.g., the storage controller 11).
Accordingly, the storage device can cause non-implemen-
tation of the addition processing with respect to, for
example, only data stored in a predetermined area, and the
IO processing performance of the storage device can be
improved. The addition processing of the storage device
may be not only the compression processing or the encryp-
tion processing, but also acquisition processing for a snap-
shot, for example.

The information notified from the higher-level apparatus
may be information showing whether or not an IO target is
a parity as in Examples 1 to 3, and may be information
created based on the behavior or operation of an application
program that is operated in a server, for example, to show
that implementation of the addition processing with respect
to data of a predetermined area is unnecessary. In short,
information with which determination on implementation/
non-implementation of the addition processing is possible
suffices.

FIG. 32 is a diagram showing an overview of function
implementation determination information registration pro-
cessing according to Example 4. Since there is a portion in
the function implementation determination information reg-
istration processing that is similar to the parity determination
information registration processing shown in FIG. 8,
description for the similar portion is omitted, and only the
difference will be described. The function implementation
determination information registration processing shown in
FIG. 32 is such that function implementation determination
information 125 instead of the parity determination infor-
mation 124 in the parity determination information regis-
tration processing shown in FIG. 8 is registered in the FMPK
166 ((1) in FIG. 32).

The function implementation determination information
125 is one example of determination information, and is
information (function implementation necessity informa-
tion) showing whether or not to implement the addition
processing for each unit area of a fixed size of a logical
VOL, for example. Based on the function implementation
determination information 125, the FMPK 160 determines
the function implementation necessity upon 1O processing,
and determines whether or not to implement the addition
processing. For example, the function implementation deter-
mination information 125 may hold the function implemen-
tation necessity information for each unit area of an entire
logical VOL, or may have the function implementation
necessity information for each unit area within a specific
size and a repetition number for the specific size. Instead of
being registered in the FMPK 160 in advance, the function
implementation determination information 125 may be
embedded within a command or within data corresponding
to a command for each 10 and notified to the FMPK 160.

FIG. 33 is a diagram showing an overview of command
processing according to Example 4.

The MP 121 issues a command with respect to the FMPK
160 via the BEPK 140 ((1) and (2) in FIG. 33). In contrast,
the FMPK 160 receives a command, and, based on address
information within the command and the function imple-
mentation determination information 125, performs deter-
mination on the implementation necessity of predetermined
addition processing by a drive function unit 167 for input-
output target data (D1 or D2 in FIG. 33) of the command ((3)
and (4) in FIG. 3). The drive function unit 167 may be a

US 9,465,561 B2

27

dedicated circuit that implements the predetermined addi-
tion processing, or may be formed by the package processor
163 of the FMPK 160.

In the case where it is determined that implementation of
the addition processing is unnecessary (a case with D1 in
FIG. 3), the FMPK 160 stores the D1 in the flash chip 166
without executing the addition processing by the drive
function unit 167 ((5) in FIG. 3).

On the other hand, in the case where it is determined that
implementation of the addition processing is necessary (a
case with D2 in FIG. 33), the FMPK 160 executes the
predetermined addition processing relating to the D2 by the
drive function unit 167, and then stores data after execution
of the addition processing in the flash chip 166 ((6) in FIG.
33).

An overview of processing when writing data in the flash
chip 166 has been described with FIG. 33. When reading
data from the flash chip 166, it suffices to perform processing
corresponding to the processing upon writing. Specifically,
it suffices for the FMPK 160 to directly read data from the
flash chip 166 without executing the addition processing in
the case where it is determined that implementation of the
addition processing is unnecessary (a case of reading the
D1), or execute the addition processing by the drive function
unit 167 with respect to and read data of the flash chip 166
in the case where it is determined that implementation of the
addition processing is necessary (a case of reading the D2).

FIG. 34 is a flowchart of the command processing accord-
ing to Example 4.

The command processing is processing executed by the
FMPK 160 that has received a command issued from the
storage controller 11.

Based on the address information that is a target of the
command and the function implementation determination
information 125, the FMPK 160 determines, upon receiving
the command (S341), whether or not to implement the
predetermined addition processing (function implementa-
tion necessity) with respect to data of an address shown by
the address information (S342).

In the case where it is determined that implementation of
the predetermined addition processing is necessary as a
result (S342: implementation necessary), the FMPK 160
implements the predetermined addition processing (S343)
by the drive function unit 167 with respect to data that is the
target of the command, implements processing (e.g., 1O
processing of data) corresponding to the command (S344),
and terminates the command processing.

On the other hand, in the case where it is determined that
implementation of the predetermined addition processing is
not necessary (S342: implementation unnecessary), the
FMPK 160 implements processing (e.g., IO processing of
data) corresponding to the command without performing the
addition processing by the drive function unit 167 (S344).

With this processing, the FMPK 160 executes only the
processing corresponding to the command without execut-
ing the addition processing with respect to data for which
execution of the addition processing is not necessary. There-
fore, processing load on the FMPK 160 can be reduced.

Several examples of the present invention have been
described above. However, the present invention is not
limited to these examples, and it is needless to say that
various modifications are possible without departing from
the gist thereof.

REFERENCE SIGNS LIST

30 Host computer
10 Storage system

20

40

45

55

65

28
11 Storage controller
160 FMPK
166 Flash chip

The invention claimed is:

1. A storage system comprising:

a plurality of storage devices, each of the plurality of
storage devices including a device controller and a
storage medium; and

a storage controller configured to control the plurality of
storage devices as a RAID group, the plurality of
storage devices including a first storage device storing
old data and a second storage device storing old parity
associated with the old data, wherein

the storage controller is configured to:
send new data for updating the old data to the first

storage device;
a first device controller of the first storage device is
configured to:
generate an intermediate parity based on the old data
and the new data;

compress the new data; and

send the intermediate parity to the storage controller;

the storage controller is configured to:

send a parity generation command indicating to gen-
erate new parity based on the old parity and the
intermediate parity to the second storage device; and

send the intermediate parity with the parity generation
command to the second storage device; and
a second device controller of the second storage device is
configured to:
generate the new parity based on the old parity and the
intermediate parity; and

store the new parity into the storage medium without
compressing the new parity based on the parity
generation command.

2. The storage system according to claim 1,

wherein the parity generation command includes infor-
mation which is used by the second storage device to
identify that an input-output target is parity instead of
user data.

3. The storage system according to claim 1,

wherein the old data stored in the first storage device is a
user data and the new data sent to the first storage
device is another user data; and

wherein the new parity, which is generated based on the
old parity and the intermediate parity, is generated from
a plurality of data stored in the storage devices, since
the old parity is associated with the old data and stored
in the second storage device, and the intermediate
parity is generated by the first device controller of the
first storage device based on the old data and the new
data.

4. The storage system according to claim 1,

wherein each device controller is configured to store user
data utilized by a host computer, and a redundant code
that is used for recovering the user data and calculated
based on the user data; and

wherein the redundant code of the user data is the parity
created using one of all-stripe parity creation, conven-
tional read modify write (RMW) parity creation, or
offload RMW parity creation.

5. The storage system according to claim 1,

wherein each device controller is configured to store user
data utilized by a host computer, and a redundant code
that is used for recovering the user data and calculated
based on the user data; and

US 9,465,561 B2

29

wherein the redundant code of the user data is the parity
created through exclusive disjunction (XOR) of the
plurality of data elements.

6. The storage system according to claim 1,

wherein each device controller is configured to store user
data utilized by a host computer, and a redundant code
that is used for recovering the user data and calculated
based on the user data; and

wherein the redundant code of the user data is the parity
created through exclusive disjunction (XOR) of the
plurality of data elements which have been multiplied
with a predetermined coefficient.

#* #* #* #* #*

10

30

